×
10.04.2015
216.013.3b64

ОГНЕУПОРНАЯ БЕСЦЕМЕНТНАЯ БЕТОННАЯ МАССА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к огнеупорной промышленности, а именно к составу огнеупорной бесцементной бетонной массы для изготовления как безобжиговых, так и обжиговых огнеупорных изделий, выполнения монолитных футеровок, высокотемпературных агрегатов в черной и цветной металлургии и других отраслях промышленности. Технический результат заключается в повышении плотности, термостойкости, прочности, в устранении разупрочнения при термоциклировании, в снижении пористости. Бетонная масса содержит, мас. %: реактивный глинозем - 6,5-13,0; активный глинозем - 2,0-5,0; микрокремнезем - 2,0-5,0; электрокорунд фракции меньше 63 мкм - 4,0-7,0; смесь диспергирующих глиноземов в соотношении 1:1-0,5-1,0 сверх 100 мас.%, смесь фракций карбида кремния 10,0-17,0, остальное - электрокорунд фракции 5000-0 мкм, вода затворитель - 3,75-4,3 сверх 100%. Карбид кремния представлен в виде смеси, мас.%: фракция меньше 63 мкм - 27,5-37,0; фракция 160-125 мкм - 16,0-20,5; фракция 400-315 мкм - 47,0-52,0. 1 з.п. ф-лы, 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к огнеупорной промышленности, а именно к составу огнеупорной бесцементной бетонной массы для изготовления как безобжиговых, так и обжиговых огнеупорных изделий, выполнения монолитных футеровок, высокотемпературных агрегатов в черной и цветной металлургии и других отраслях промышленности.

Известны бетонные массы и изделия из нее: RU 2267472 С2, С04В 35/66, С04В 35/101, 2004; RU 2135428 C1, С04В 33/00, C04B 35/00, 1998; RU 2239612 C1, C04B 35/101, C04B 35/66, 2003; RU 2248337 С2, C04B 35/101, C04B 35/66, C04B 28/34, 2003; RU 2397968, C1, C04B 28/26, C04B 40/00, B82B 3/00, C04B 111/20 2009.

Известна огнеупорная бетонная масса (патент RU 2267472 С2, С04В 35/66, С04В 35/101, 2004) состава, мас.%: карбид кремния 21-28%, каменноугольный пек 2-4, кальцийалюминатный цемент 4-6, реактивный глинозем 5-10, дефлокулянт 0,8-1,2, вода 4,0-4,5 и огнеупорный заполнитель - остальное. В качестве огнеупорного заполнителя используют электроплавленный корунд, а в качестве дефлокулянта - модифицированные реактивные глиноземы (диспергирующие глиноземы). Недостатком бетонной массы является присутствие в составе большого количества кальцийалюминатного цемента, для затворения которого необходимо повышенное содержание воды, что приводит к увеличению пористости, и, соответственно, уменьшению механической прочности. Изделия из такой бетонной массы характеризуются высокой пористостью и низкой механической прочностью. Высокая пористость снижает устойчивость бетона к коррозии расплавами шлаков.

Известна огнеупорная масса (патент RU 2135428 C1, C04B 33/00, C04B 35/00, 1998) мас.%: карбид кремния 10-17; графит 5-10; глина 2-6; каменноугольный пек 3-5; пластификатор (лигносульфонат натрия) 1-3; электрокорунд с размером частиц 0,006-0,06 мм, при содержании в нем не более 5% фракции с размером частиц 0,006-0,01 мм 10-20; глиноземистый шамот или глиноземистый шамот из отработанной футеровки - остальное. Данная бетонная масса характеризуется высокими показателями пористости (25,4-22,7%) и низкой прочностью (29,2-30,0 МПа).

Наиболее близким аналогом к заявляемому изобретению является бетонная смесь (RU 2239612 С1, C04B 35/101, С04В 35/66, 2003), содержащая, мас.%: зернистого электрокорунда фр. 6-3 мм 15-22, фр. 3-1 мм 8-20, фр. 1-0 мм или смеси фр. 0,5-0 мм и фр. 1-0,5 мм 13-27, карбида кремния 13-27, тонкодисперсного корунда 14-24, высокоглиноземистого цемента 7-16 и пластифицирующей добавки 0,03-0,55. Во втором варианте смесь содержит, мас.%: зернистого электрокорунда фр. 3-1 мм 28-42 или смеси фр. 6-3 мм в количестве 17-25 и фр. 3-1 мм в количестве 27-33, фр. 1-0 мм 18-42, тонкодисперсного шлама электрокорунда фр. -50 мкм 5-10, табулярного корунда фр. -20 мкм 14-17, высокоглиноземистого цемента 6-8 и пластифицирующей добавки 0,03-0,55. В третьем варианте смесь содержит, мас.%: зернистого электрокорунда фр. 3-1 мм 18-40 или смеси фр. 6-3 мм в количестве 18-25 и фр. 3-1 мм количестве 18-32, фр. 1-0,5 мм 9-42, тонкодисперсного электрокорунда фр. <63 мкм 30-35, высокоглиноземистого цемента 7-9 и пластифицирующей добавки 0,2-0,3. В качестве пластифицирующей добавки могут быть использованы триполифосфат натрия, смесь кальцинированной соды и лигносульфоната натрия, смесь борной кислоты, лимонной кислоты, кальцинированной соды и карбоната лития, смесь лимонной кислоты, кальцинированной соды и оксида лития или органическое волокно. Недостатком бетонной массы является большое количество высокоглиноземистого цемента 7-15 мас.%, что снижает прочность при высоких температурах. Как следствие, для такого количества цемента необходимо большое количество воды-затворения (по RU 2239612 С1 от 4,6 до 8,0%), что увеличивает пористость изделий из такой массы и уменьшает прочность изделий, это видно из представленных физико-технических показателей. Кроме того, карбида кремния одной фракции 1,6-1,25 мм не позволяет получить плотную упаковку компонентов массы, а также не позволяет получить высокую прочность бетона.

Задачей предлагаемого технического решения является разработка бесцементной бетонной массы для получения из нее бетонных изделий с пониженным содержанием воды-затворения, пониженной открытой пористостью, с повышенной механической прочностью, повышенной плотностью, с высокой температурой начала деформации под нагрузкой и устранения разупрочнения при термоциклировании.

Технический эффект состоит: в повышении свойств изделий из бесцементной бетонной массы: плотности свыше 3,15 г/мм3; термостойкости свыше 30 теплосмен (1000°С - вода); в устранении разупрочнения при термоциклировании; в снижении открытой пористости до 11,0%; повышении механической прочности до 135 МПа; исключении разупрочнения в интервале 600-1000°С; кроме того, повышается устойчивость к действию расплава доменного шлака и криолита.

Повышение физико-технических свойств достигается за счет того, что бесцементная бетонная масса не содержит высокоглиноземистое вяжущее, содержит электрокорунд фракции меньше 63 мкм и дополнительно содержит смесь фракций карбида кремния 10,0-17,0 мас.%: меньше 63 мкм 27,5-37,0 мас.%, фракции 160-125 мкм 16,0-20,5 мас.% и фракции 400-315 мкм 47,0-52,0 мас.%, а высокоглиноземистый компонент представлен реактивным и активным глиноземом в соотношении (23,5÷27,8)-(72,2÷76,5) соответственно, при следующем соотношении компонентов, мас.%:

Реактивный глинозем 6,5-13,0
Активный глинозем 2,0-5,0
Микрокремнезем 2,0-5,0
Смесь фракций карбида кремния 10,0-17,0
Электрокорунд меньше 63 мкм 4,0-7,0
Электрокорунд фракции 5000-0 мкм остальное
Смесь диспергирующих глиноземов M-ADS 1
и M-ADW1 в соотношении 1:1, сверх 100% 0,5-1,0
Вода-затворения, сверх 100% 3,75-4,3

Смесь фракций карбида кремния представлена в виде смеси, мас.%:

Фракция меньше 63 мкм 27,5-37,0
Фракция 160-125 мкм 16,0-20,5
Фракция 400-315 мкм 47,0-52,0

Введение реактивного глинозема позволяет исключить дилатансию реологического поведения бетонов, а также способствует повышению прочности, снижению окисляемости и повышению термомеханических свойств изделий. При высоких температурах реактивный глинозем реагирует с микрокремнеземом, образует вторичный муллит в форме игл, которые армируют структуру изделий. Муллит образует высокотемпературную минеральную связку и обеспечивает повышение прочности изделий, а также способствует повышению термостойкости. При введении менее 6,5 мас.% реактивного глинозема происходит уменьшение механической прочности, а увеличение содержания реактивного глинозема более 13,0 мас.% приводит к уменьшению механической прочности из-за объемных изменений, сопровождающихся при образовании большого количества муллита.

Введение активного глинозема обеспечивает при реакции с водой гелеобразование алюмогидратов, улучшающих подвижность массы, которые при нагревании выше 1000°С образуют кристаллы α-Al2O3, формирующие затем минеральную связку. Замена высокоглиноземистого цемента на активный глинозем увеличивает химическую устойчивость к расплавам криолита и доменного шлака. При введении активного глинозема менее 2,0 мас.% уменьшается механическая прочность, а при введении активного глинозема более 5,0 мас.% увеличивается открытая пористость, уменьшается механическая прочность.

Введение микрокремнезема в матрицу бетонов улучшает текучесть и снижает водопотребность массы, образует гелеобразные продукты, заполняющие поры в бетоне. Введение микрокремнезема исключает разупрочнение образцов бетона в интервале 600-1100°С. При введении менее 2,0 мас.% микрокремнезема в массу происходит снижение подвижности массы, а при введении более 5,0 мас.% увеличивается время затвердевания массы, снижается прочность при высоких температурах.

Введение смеси фракций карбида кремния в количестве 10-17 мас.%: фракции меньше 63 мкм 27,5-37,0 мас.%, фракции 160-125 мкм 16,0-20,5 мас.% и фракции 400-315 мкм 47,0-52,0 мас.% способствует увеличению стойкости при термоциклировании, увеличению плотности упаковки, уменьшению пористости, увеличению прочности и образованию мелкопористой структуры. При введении смеси фракций карбида кремния менее 10,0 мас.% уменьшается механическая прочность, уменьшается химическая устойчивость, а при введении смеси фракций карбида кремния более 17,0 мас.% происходит увеличение открытой пористости.

Введение электрокорунда фракции меньше 63 мкм способствует увеличению плотности упаковки, уменьшению пористости, увеличению прочности и образованию мелкопористой структуры. При введении электрокорунда фракции меньше 63 мкм менее 4,0 мас.% увеличивается пористость и уменьшается механическая прочность, а при введении электрокорунда фракции меньше 63 мкм более 7,0 мас.% происходит увеличение открытой пористости.

Введение смеси диспергирующих глиноземов M-ADS1 и M-ADW1 в соотношении 1:1 способствует улучшению растекания бетонной массы по форме и снижению содержания воды для затворения бетонной массы, кроме того, позволяет регулировать сроки схватывания массы. При введении смеси диспергирующих глиноземов в соотношении 1:1 менее 0,5 мас.% ухудшается растекаемость массы и требуется большее количество воды для затворения массы, а при введении более 1,0 мас.% увеличивается срок схватывания бетонной массы.

При разработке бесцементной бетонной массы использовали электрокорунд фракций 5000-0 мкм, фракции меньше 63 мкм марки 25А производства «Бокситогорский глиноземный завод», карбид кремния фракции 400-315, фракции 160-125 мкм и фракции меньше 63 мкм производства ОАО «Волжский абразивный завод» ГОСТ 26327-84, микрокремнезем марки МК 85, диспергирующие глиноземы M-ADS1 и M-ADW1 производства фирмы Almatis, реактивный глинозем марки ГРТ производства ОАО «Боровичский комбинат огнеупоров», активный глинозем из числа растворимых форм типа «Альфабонд» марки 300.

Физико-технические свойства определяли по стандартным методам:

Кажущаяся плотность, открытая пористость по ГОСТ 2409-95.

Предел прочности при сжатии по ГОСТ Р 5306.2-2008.

Температура начала деформации в воздушной атмосфере по ISO 1893-1989.

Термическая стойкость по ГОСТ 7875.2-94.

Шлакоустойчивость определяли тигельным методом, В тигли, изготовленные из разработанных составов, засыпали по 50 г шлака следующего химического состава, мас.%: SiO2 - 16,14, TiO2 - 0,43, Al2O3 - 13,79, Fe2O3 - 5,28, CaO - 48,56, MgO - 0,77, MnO - 2,16, P2O5 - 0,57, FeO - 11,20, крупностью 0,2 мм. Тигли со шлаком нагревали со скоростью 250°С/час до 1500° и выдерживали при этой температуре 2 часа. После охлаждения тигли распиливали через центр углубления и измеряли глубину разъедания бетона шлаком.

Устойчивость к расплаву криолита определяли при Т=1000°С выдержка 1 час. В тигли, изготовленные из разработанных составов бетонов, засыпали по 15 г криолита следующего химического состава, мас.%: Al2O3 - 2,32, CaF2 - 6,02, MgF2 - 0,77, AlF3 - 25,6, NaF - 65,29. После охлаждения тигли распиливали через центр углубления и измеряли площадь взаимодействия криолита с материалом тигля.

В таблице 1 приведены примеры составов заявляемой бетонной массы, а в таблице 2 - физико-технические свойства образцов из бетонной массы после сушки при Т=125°С и после обжига в окислительной среде при Т=1450°С.

Примеры реализации бесцементной бетонной массы

Пример 1. Для получения бесцементной бетонной массы предварительно в роторном интенсивном смесителе приготавливали смесь фракций карбида кремния: 49,0 мас.% карбида кремния фракции 400-315 мкм, 18,5 мас.% карбида кремния фракции 160-125 мкм, 32,5 мас.% карбида кремния фракции меньше 63 мкм и перемешивали в течение 7 минут. После смешения смесь фракций карбида кремния выгружали в отдельную емкость. Затем к 64,2 мас.% электрокорунда фракции 5000-0 мкм марки 25А добавляли 3,3 мас.% микрокремнезема МК 85, 8,4 мас.% реактивный глинозем ГРТ, 3,2 мас.% активный глинозем «Альфабонд 300», 5,4 мас.% электрокорунд фракции меньше 63 мкм марки 25А, 15,5 мас.% приготовленной смеси фракций карбида кремния - 7,59 мас.% фракции 400-315 мкм, 2,87 мас.% фракции 160-125 мкм, 5,04 мас.% фракции меньше 63 мкм; 0,7 мас.% сверх 100% смеси диспергирующих глиноземов M-ADS1 и M-ADW1 в соотношении 1:1 - смесь смешивали в роторном интенсивном смесителе 5 мин. В подготовленную смесь вводили воду затворения 3,75 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°С, выдержка 1 час. Обжиг образцов производили в печи в окислительной среде при Т=1450°С, выдержка 1 час (таблица 1, состав №2; таблица 2, свойства состав №2).

Пример 2. Для получения бесцементной бетонной массы предварительно в роторном интенсивном смесителе приготавливали смесь фракций карбида кремния: 49,3 мас.% карбида кремния фракции 400-315 мкм, 16,7 мас.% карбида кремния фракции 160-125 мкм, 34,0 мас.% карбида кремния фракции меньше 63 мкм и перемешивали в течение 7 минут. После смешения смесь фракций карбида кремния выгружали в отдельную емкость. Затем к 65,6 мас.% электрокорунда фракции 5000-0 мкм марки 25А добавляли 3,5 мас.% микрокремнезема МК 85, 8,9 мас.% реактивный глинозем ГРТ, 3,2 мас.% активный глинозем «Альфабонд 300», 5,9 мас.% электрокорунд фракции меньше 63 мкм марки 25А, 12,9 мас.% приготовленной смеси фракций карбида кремния - 6,36 мас.% фракции 400-315 мкм, 2,15 мас.% фракции 160-125 мкм, 4,39 мас.% фракции меньше 63 мкм; 0,9 мас.% сверх 100% смеси диспергирующих глиноземов M-ADS1 и M-ADW1 в соотношении 1:1 - смесь смешивали в роторном интенсивном смесителе 5 мин. В подготовленную смесь вводили воду затворения 4,0 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°С, выдержка 1 час. Обжиг образцов производили в печи в окислительной среде при Т=1450°С, выдержка 1 час (таблица 1, состав №3; таблица 2, свойства состав №3).

Пример 3. Для получения бесцементной бетонной массы предварительно в роторном интенсивном смесителе приготавливали смесь фракций карбида кремния: 50,0 мас.% карбида кремния фракции 400-315 мкм, 20,0 мас.% карбида кремния фракции 160-125 мкм, 30,0 мас.% карбида кремния фракции меньше 63 мкм и перемешивали в течение 7 минут. После смешения смесь фракций карбида кремния выгружали в отдельную емкость. Затем к 65,8 мас.% электрокорунда фракции 5000-0 мкм марки 25А добавляли 3,1 мас.% микрокремнезема МК 85, 7,1 мас.% реактивный глинозем ГРТ, 3,9 мас.% активный глинозем «Альфабонд 300», 5,6 мас.% электрокорунд фракции меньше 63 мкм марки 25А, 14,5 мас.% приготовленной смеси фракций карбида кремния - 7,25 мас.% фракции 400-315 мкм, 2,90 мас.% фракции 160-125 мкм, 4,35 мас.% фракции меньше 63 мкм; 1,0 мас.% сверх 100% смеси диспергирующих глиноземов M-ADS1 и M-ADW1 в соотношении 1:1 - смесь смешивали в роторном интенсивном смесителе 5 мин. В подготовленную смесь вводили воду затворения 4,0 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°С, выдержка 1 час. Обжиг образцов производили в печи в окислительной среде при Т=1450°С, выдержка 1 час (таблица 1, состав №5; таблица 2, свойства состав №5).

Пример 4. Для получения бесцементной бетонной массы предварительно в роторном интенсивном смесителе приготавливали смесь фракций карбида кремния: 47,0 мас.% карбида кремния фракции 400-315 мкм, 16,0 мас.% карбида кремния фракции 160-125 мкм, 37,0 мас.% карбида кремния фракции меньше 63 мкм и перемешивали в течение 7 минут. После смешения смесь фракций карбида кремния выгружали в отдельную емкость. Затем к 53,0 мас.% электрокорунда фракции 5000-0 мкм марки 25А добавляли 5,0 мас.% микрокремнезема МК 85, 13,0 мас.% реактивный глинозем ГРТ, 5,0 мас.% активный глинозем «Альфабонд 300», 7,0 мас.% электрокорунд фракции меньше 63 мкм марки 25А, 17,0 мас.% приготовленной смеси фракций карбида кремния - 7,99 мас.% фракции 400-315 мкм, 2,72 мас.% фракции 160-125 мкм, 6,29 мас.% фракции меньше 63 мкм; 1,0 мас.% сверх 100% смеси диспергирующих глиноземов M-ADS1 и M-ADW1 в соотношении 1:1 - смесь смешивали в роторном интенсивном смесителе 5 мин. В подготовленную смесь вводили воду затворения 4,1 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°С, выдержка 1 час. Обжиг образцов производили в печи в окислительной среде при Т=1450°С, выдержка 1 час (таблица 1, состав №10; таблица 2, свойства состав №10).

Составы бетонных масс №1, №4, №6, №7, №8, №9 (таблица 1) приготавливали аналогично примерам 2, 3, 5 и 10.

Таблица 1
Состав бетонной массы
Компонент Заявляемая бетонная масса Составы прототипа, пат. RU 2239612
мас.% мас. %
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №1 №2 №3 №4 №5 №6 №7
Микрокремнезем МК85 2,0 3,3 3,5 2,5 3,1 3,1 4,5 3,5 2,6 5,0 - - - - - - -
Реактивный глинозем ГРТ 6,5 8,4 8,9 8,6 7,1 8,2 12,0 10,5 7,5 13,0 - - - - - - -
Активный глинозем «Альфабонд 300» 2,0 3,2 3,2 3,6 3,9 2,4 3,0 3,5 2,8 5,0 - - - - - - -
Электрокорунд меньше 63 мкм 4,0 5,4 5,9 4,6 5,6 5,5 6,3 5,0 7,0 7,0 - - - - - - -
Смесь фракций карбида кремния:
Фр. меньше 63 мкм 2,75 5,04 4,39 4,21 4,35 4,59 3,53 3,40 4,89 6,29
Фр. 160-125 мкм 2,05 2,87 2,15 2,85 2,90 2,29 1,97 2,40 3,30 2,72 - - - - - - -
Фр. 400-315 мкм 5,20 7,59 6,36 7,34 7,25 6,62 5,50 6,00 8,31 7,99
ИТОГО: 10,0 15,5 12,9 14,4 14,5 13,5 11,0 11,8 16,5 17,0
Электрокорунд 5000-0 мкм 75,5 64,2 65,6 66,3 65,8 67,3 63,2 65,7 63,6 53 - - - - - - -
Смесь диспергирующих глиноземов M-ADS1 и M-ADW1 (соотношение 1:1, сверх 100%) 0,5 0,7 0,9 0,5 1,0 1,0 0,6 0,5 0,5 1,0 - - - - - - -
Электрокорунд фр. 6-3 - - - - - - - - - - 15 17,5 20 20 15 20 17,5
Электрокорунд фр. 3-1 - - - - - - - - - - 12 10 10 18 15 10 12,5
Электрокорунд фр. 1-0 - - - - - - - - - - 20 17,5 25 15 - - -
Электрокорунд фр. 1-0 или смесь фр. 0,5-0 и фр. 1-0,5 в соотношении 1:1 - - - - - - - - - - - - - - 15 25 20
Шлам электрокорунда фр. - 50 мкм - - - - - - - - - - 18 16 16 15 6 5 4
Табулярный корунд - - - - - - - - - - - - - - 17 17 16
SiC фp.1,6-1,25 мм - - - - - - - - - - 23 25 15 17 25 15 21
Высокоглиноземистый цемент - - - - - - - - - - 12 14 14 15 7 8 9
Пластифицирующая добавка (сверх 100%) - - - - - - - - - - 0,25 0,03 0,52 0,065 0,46 0,29 0,065
Вода, сверх 100% 4,3 3,75 4,0 3,9 4,0 3,8 3,95 3,8 3,8 4,1 7,2 7,5 7,5 8 4,6 4,6 4,8

Таблица 2
Физико-технические свойства образцов
Свойства заявляемого материала Свойства прототипа, пат. RU 2239612
Свойства Пример Пример
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №1 №2 №3 №4 №5 №6 №7
Температура сушки, °C 125 105
Потк, % 10,8 9,9 10,5 9,7 9,9 10,1 9,8 10,3 10,0 10,5 15,3 15,0 16,0 16,0 13,5 13,0 14,0
ρкаж, г/см3 3,19 3,26 3,27 3,32 3,28 3,27 3,27 3,27 3,28 3,14 2,91 2,89 2,82 2,89 3,1 3,1 3,09
σсж, МПа 24,3 35,5 57,7 36,3 50,2 70,9 54,8 54,0 49,0 27,8 36,0 40,0 40,0 39,0 24,1 40,0 35,0
Температура термообработки, °C 1450 1600
Потк, % 11,0 10,8 10,8 10,0 10,8 10,5 10,4 10,7 10,6 10,7 20,5 20,0 15,8 16,0 12,5 12,0 11,5
ρкаж, г/см3 3,17 3,25 3,25 3,31 3,26 3,26 3,24 3,25 3,26 3,15 2,91 2,91 2,93 2,92 3,09 3,12 3,09
σсж, МПа 72,0 135,1 110,1 113,0 114,6 99,7 100,9 104,8 100,1 65,0 35,0 38,0 36,6 35,1 34,0 63,0 35,0
σсж после 30 теплосмен, МПа 67,0 132,4 102,6 103,1 108,4 96,0 98,3 99,6 97,3 58,0 - - - - - - -
Термостойкость, 1000°С - вода св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 - - - - - - -
Температура начала деформации под нагрузкой, 0,5/1,0% Свыше 1650 Свыше 1650 Свыше 1650 1605/1630 - 1608/1637 1623/1645 Свыше 1650 Свыше 1650 1588/1606 - - - - - - -
Температура начала деформации - - - - - - - - - - 1360 1360 1390 1390 >1700 >1700 >1700
Температура 4%-ного сжатия - - - - - - - - - - 1490 1490 1530 1530 >1700 >1700 >1700
Устойчивость к расплаву криолита (КО=2,55), площадь пропитки, мм2 244 191 - 180 - 199 184 - 195 - - - - - - - -
Шлакоустойчивость, мм 1,2 0,5 0,6 0,4 0,5 0,6 0,4 0,6 0,5 1,0 2,5 1,5 2,0 2,5 1,8 2,0 1,7

Таким образом, бетонные образцы из заявляемой бетонной массы обладают высокими показателями физико-технических свойств: плотности, механической прочности, низкими значениями открытой пористости, отсутствием разупрочнения при термоциклировании и высокой устойчивостью при воздействии расплавов доменного шлака и криолита.

Источник поступления информации: Роспатент

Showing 1-10 of 22 items.
20.06.2013
№216.012.4da7

Способ измерения температуры внутри вещества или живого организма

Изобретение относится к области термометрии и может быть использовано для дистанционного измерения локальной температуры внутри вещества или живого организма. Заявлен способ измерения температуры с использованием в качестве термометрического свойства намагниченности однодоменных ферромагнитных...
Тип: Изобретение
Номер охранного документа: 0002485461
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.6073

Микробиореактор и способ его эксплуатации

Группа изобретений относится к области биотехнологии, в частности к биореакторам, преимущественно к микро- и минимасштабным биореакторам с иммобилизованным на частицах ферментом и может быть использовано для проведения биотехнологических процессов в жидких средах в фармацевтической, пищевой и...
Тип: Изобретение
Номер охранного документа: 0002490323
Дата охранного документа: 20.08.2013
10.11.2013
№216.012.7d5a

Состав композиции и покрытие из нее

Изобретение относится к составам огнеупорных композиций и покрытий для защиты деталей литейного оборудования, выполненных из чугуна, от воздействия расплава алюминия. Технический результат изобретения заключается в получении многократно используемого покрытия с повышенной огнестойкостью,...
Тип: Изобретение
Номер охранного документа: 0002497763
Дата охранного документа: 10.11.2013
10.01.2014
№216.012.955e

Способ объемного дозирования сыпучих материалов и устройство для его осуществления

Изобретение относится к области дозирования с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов сыпучих тел из резервуара независимо от веса тел и способа их подачи. Изобретение направлено на повышение точности и надежности дозирования, а также на снижение затрат...
Тип: Изобретение
Номер охранного документа: 0002503932
Дата охранного документа: 10.01.2014
20.07.2014
№216.012.ddc7

Способ получения каталитического покрытия для очистки газов

Изобретение относится к области катализа. Описан способ получения каталитического покрытия для очистки газов от оксидов углерода и азота, водорода и вредных органических веществ. Технический результат - получено каталитическое покрытие для очистки газов от оксидов углерода и азота, водорода и...
Тип: Изобретение
Номер охранного документа: 0002522561
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f301

Способ измерения термодинамической температуры

Предложен способ измерения термодинамической температуры. В способе определяют намагниченность суспензии суперпарамагнитных наночастиц. Намагниченность суспензии поддерживают постоянной, а температуру находят по значению магнитной индукции внутри суспензии. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002528031
Дата охранного документа: 10.09.2014
10.12.2014
№216.013.0d2d

Способ управления процессом модифицирования поверхности полимерных материалов

Изобретение относится к технологии модифицирования (обработки) поверхности полимерных материалов. Способ управления процессом модифицирования поверхности полимерных материалов в низкотемпературной плазме высокочастотного разряда при пониженных давлениях среды осуществляют путем изменения...
Тип: Изобретение
Номер охранного документа: 0002534790
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.10bf

Способ переработки жидких нефтешламов в гидратированное топливо

Изобретение может быть использовано в области нефтедобывающей промышленности. Способ переработки жидких нефтешламов в гидратированное топливо включает нагрев и очистку нефтешлама. Очищенную нагретую смесь углеводородов с водой подают в рабочую емкость с разделением по крайней мере на два...
Тип: Изобретение
Номер охранного документа: 0002535710
Дата охранного документа: 20.12.2014
20.02.2015
№216.013.2822

Способ определения намагниченности насыщения магнитной жидкости

Использование: для определения намагниченности насыщения магнитной жидкости. Сущность изобретения заключается в том, что помещают жидкость во внешнее магнитное поле, индукцию которого можно менять, измеряют напряженность H и индукцию B магнитного поля внутри жидкости и определяют...
Тип: Изобретение
Номер охранного документа: 0002541731
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2930

Шихта и высокотемпературный материал с низким значением коэффициента температурного линейного расширения, полученный из нее

Изобретение относится к огнеупорной промышленности, в частности к огнеупорному материалу с низким коэффициентом температурного линейного расширения (КТЛР) для изготовления огнеупорных изделий, например защитных чехлов термоэлементов, экранов и изолирующих трубок, раздаточных изделий для...
Тип: Изобретение
Номер охранного документа: 0002542001
Дата охранного документа: 20.02.2015
Showing 1-10 of 25 items.
20.06.2013
№216.012.4da7

Способ измерения температуры внутри вещества или живого организма

Изобретение относится к области термометрии и может быть использовано для дистанционного измерения локальной температуры внутри вещества или живого организма. Заявлен способ измерения температуры с использованием в качестве термометрического свойства намагниченности однодоменных ферромагнитных...
Тип: Изобретение
Номер охранного документа: 0002485461
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.6073

Микробиореактор и способ его эксплуатации

Группа изобретений относится к области биотехнологии, в частности к биореакторам, преимущественно к микро- и минимасштабным биореакторам с иммобилизованным на частицах ферментом и может быть использовано для проведения биотехнологических процессов в жидких средах в фармацевтической, пищевой и...
Тип: Изобретение
Номер охранного документа: 0002490323
Дата охранного документа: 20.08.2013
10.11.2013
№216.012.7d5a

Состав композиции и покрытие из нее

Изобретение относится к составам огнеупорных композиций и покрытий для защиты деталей литейного оборудования, выполненных из чугуна, от воздействия расплава алюминия. Технический результат изобретения заключается в получении многократно используемого покрытия с повышенной огнестойкостью,...
Тип: Изобретение
Номер охранного документа: 0002497763
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.90e2

Способ термохимической переработки нефтяных шламов или кислых гудронов в смесях с твердым природным топливом для получения жидких продуктов и твердых остатков

Изобретение относится к нефтехимической промышленности и может быть использовано для получения жидких и твердых продуктов совместной термохимической переработкой нефтешлама или кислого гудрона в смесях с твердым природным топливом в реакторах, обогреваемых газовым теплоносителем. Способ...
Тип: Изобретение
Номер охранного документа: 0002502783
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.955e

Способ объемного дозирования сыпучих материалов и устройство для его осуществления

Изобретение относится к области дозирования с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов сыпучих тел из резервуара независимо от веса тел и способа их подачи. Изобретение направлено на повышение точности и надежности дозирования, а также на снижение затрат...
Тип: Изобретение
Номер охранного документа: 0002503932
Дата охранного документа: 10.01.2014
20.07.2014
№216.012.ddc7

Способ получения каталитического покрытия для очистки газов

Изобретение относится к области катализа. Описан способ получения каталитического покрытия для очистки газов от оксидов углерода и азота, водорода и вредных органических веществ. Технический результат - получено каталитическое покрытие для очистки газов от оксидов углерода и азота, водорода и...
Тип: Изобретение
Номер охранного документа: 0002522561
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f301

Способ измерения термодинамической температуры

Предложен способ измерения термодинамической температуры. В способе определяют намагниченность суспензии суперпарамагнитных наночастиц. Намагниченность суспензии поддерживают постоянной, а температуру находят по значению магнитной индукции внутри суспензии. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002528031
Дата охранного документа: 10.09.2014
10.12.2014
№216.013.0d2d

Способ управления процессом модифицирования поверхности полимерных материалов

Изобретение относится к технологии модифицирования (обработки) поверхности полимерных материалов. Способ управления процессом модифицирования поверхности полимерных материалов в низкотемпературной плазме высокочастотного разряда при пониженных давлениях среды осуществляют путем изменения...
Тип: Изобретение
Номер охранного документа: 0002534790
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.10bf

Способ переработки жидких нефтешламов в гидратированное топливо

Изобретение может быть использовано в области нефтедобывающей промышленности. Способ переработки жидких нефтешламов в гидратированное топливо включает нагрев и очистку нефтешлама. Очищенную нагретую смесь углеводородов с водой подают в рабочую емкость с разделением по крайней мере на два...
Тип: Изобретение
Номер охранного документа: 0002535710
Дата охранного документа: 20.12.2014
20.02.2015
№216.013.2822

Способ определения намагниченности насыщения магнитной жидкости

Использование: для определения намагниченности насыщения магнитной жидкости. Сущность изобретения заключается в том, что помещают жидкость во внешнее магнитное поле, индукцию которого можно менять, измеряют напряженность H и индукцию B магнитного поля внутри жидкости и определяют...
Тип: Изобретение
Номер охранного документа: 0002541731
Дата охранного документа: 20.02.2015
+ добавить свой РИД