×
20.02.2015
216.013.2961

Результат интеллектуальной деятельности: СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ЖЕЛЕЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к процессам получения жидкого металла из окисленного железосодержащего сырья, техногенных отходов черной и цветной металлургии, в том числе содержащего примеси цветных металлов. Шихтовые материалы в виде железосодержащих материалов, флюсующих добавок и углеродсодержащих материалов загружают в плавильную зону двухзонной печи. Расплавляют их в железосодержащем расплаве, барботируемом кислородсодержащим дутьем, дожигают отходящие газы с последующей подачей расплава в восстановительную зону. В восстановительную зону загружают уголь, восстанавливают железо с образованием железоуглеродистого расплава и шлака, дожигают отходящие из ванны зоны восстановления горючие газы, осуществляют раздельный выпуск продуктов плавки. Причем в плавильной зоне отношение кислорода, поступающего с барботажным дутьем, к углероду, поступающему с шихтовыми материалами, поддерживают на уровне, обеспечивающем отношение CO/CO в отходящих из ванны плавильной зоны газах в пределах 0,01-0.5. Изобретение позволяет снизить удельные расходы энергоносителей, обеспечивает возможность переработки шихтовых материалов крупностью свыше 20 мм, повышенной влажности и смерзшихся шихтовых материалов. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области черной и цветной металлургии и может быть использовано в процессах получения жидкого металла из окисленного железосодержащего сырья, техногенных отходов черной и цветной металлургии, в том числе содержащего примеси цветных металлов.

В черной металлургии известен пирометаллургический способ непрерывной переработки окисленного сырья цветных, черных металлов - процесс Ромелт [«Процесс Ромелт» / Под ред. В.А. Роменец, М.: МИСИС, Изд. дом «Руда и металлы», 2005. - 400 с.].

Суть процесса Ромелт заключается в следующем. Шлаковая ванна барботируется дутьем с содержанием кислорода 50-99%. В шлаковой ванне поддерживается температура на уровне 1400-1500°C. На поверхность шлаковой ванны подаются железосодержащие материалы, энергетический уголь, флюсующие добавки.

Уголь, попадающий на шлаковую поверхность, вовлекается шлаковыми потоками в нижние зоны ванны, где за счет кислорода дутья происходит его горение до CO. Перемешивание и подогрев шлаковой ванны можно поддерживать также за счет подачи в фурмы нижнего ряда природного газа. При этом метан горит до CO и H2.

Оксиды железа и других металлов восстанавливаются в шлаковой ванне углеродом. От 20 до 40% поступающей в шлаковую ванну воды разлагается также с расходованием углерода угля.

Важным компонентом, влияющим на расход энергоносителей в процессе Ромелт, являются летучие угля. В зависимости от генезиса угли могут содержать от 6 до 50% летучих. При этом летучие углей содержат углеводороды, в основном представленные метаном. От 20 до 40% метана разлагается на водород и сажистый углерод. Выделяющийся сажистый углерод может участвовать в реакциях прямого восстановления оксидов и снижать общий расход угля.

В случае применения карбонатных руд и флюсов их разложение происходит с выделением диоксида углерода, который взаимодействует с углеродом угля. Реакция носит эндотермический характер и сопровождается существенным перерасходом угля.

Компенсация дефицита тепла в восстановительной зоне обеспечивается частичным дожиганием отходящих из ванны горючих газов кислородом дутья фурм верхнего ряда.

К недостаткам процесса следует отнести:

- восстановление высших оксидов железа и других металлов углеродом до CO;

- разложение части влаги шихты с использованием твердого углерода;

- малая степень полезного использования летучих угля;

- перерасход углерода угля на взаимодействие с CO2 карбонатов;

- ограничение по крупности шихтовых материалов;

- ограничение по степени дожигания отходящих из ванны газов.

Наиболее близким по технической сущности, приемам и достигаемому эффекту является «Способ переработки сырья, содержащего цветные металлы и железо», RU 2194781 C2, опубликованный 20.12.2002 г. В технической литературе этот процесс получил название двухзонного процесса Ванюкова.

В соответствии с патентом переработка окисленных руд, содержащих цветные металлы и железо, происходит в двухзонной печи. В окислительную зону через фурмы нижнего ряда подают смесь воздуха и технического кислорода. В расплав окислительной зоны загружают руду, уголь и флюсующие добавки. При переработке окисленного сырья в окислительную зону печи подают углеродсодержащий материал и кислород в количествах, необходимых для полного сгорания углерода с максимальным выделением тепла. В окислительной зоне протекают процессы горения угля до CO2, реакции восстановления гематита руды до магнетита.

В окислительной зоне происходит также разложение карбонатов флюса, испарение влаги, нагрев и расплавление шихтовых материалов. Расплав из зоны плавления передается в восстановительную зону. В ту же зону подают уголь.

Компенсация дефицита тепла в восстановительной зоне обеспечивается частичным дожиганием отходящих из ванны горючих газов кислородом дутья фурм верхнего ряда.

К недостаткам способа относятся:

- повышенный расход углеродсодержащих материалов и кислорода;

- высокая окисленность железистого расплава зоны плавления;

- недостаточное использование химического тепла отходящих газов.

Перечисленные недостатки приводят к перерасходу энергоносителей и снижают производительность печи.

Техническим результатом изобретения является возможность комплексной переработки железосодержащего сырья и техногенных материалов в двухзонной печи из неподготовленного сырья и отходов с применением рядовых углей.

В плавильной зоне происходит горение угля в слое расплава, барботируемого кислородсодержащим дутьем, подаваемым через фурмы нижнего ряда. В отличие от двухзонного процесса Ванюкова, горение углерода ведут с α<1. Присутствие небольших количеств CO в отходящих из расплава зоны плавления газах позволяет избежать переокисления железистого расплава и поддерживать железо в расплаве в двухвалентном состоянии. Для увеличения удельной производительности целесообразно поддерживать температуру в плавильной зоне на уровне 1450-1550°C, что выше, чем в процессе Ванюкова.

Так же, как и в двухзонной печи Ванюкова, влага шихтовых материалов испаряется без разложения на H2 и CO, диоксид углерода карбонатов удаляется из ванны практически без взаимодействия с углеродом угля, восстановление высших оксидов железа до FeO идет косвенным путем.

Другим важным преимуществом предлагаемого способа по сравнению с процессом Ромелт является полное полезное использование углеводородов горючих угля по реакции полного горения.

Преимуществом предлагаемого способа является также возможность переработки железосодержащих материалов и углей крупностью свыше 20 мм, шихтовых материалов повышенной влажности, смерзшихся конгломератов шихтовых материалов. В целом, единственным требованием к шихтовым материалам, поступающим в плавильную зону, является возможность дозирования и подачи в рабочую зону печи.

Такие вредные примеси как S и As переводятся в газовую фазу и удаляются с отходящими газами.

Подготовленный в зоне плавления железосодержащий расплав через переток передается в зону восстановления.

В восстановительную зону печи загружается уголь и, при необходимости, специальные добавки. Дефицит тепла в зоне восстановления компенсируется частичным дожиганием отходящих горючих газов кислородным дутьем фурм верхнего ряда. Отходящие газы передаются дальше в зону плавления, где осуществляется их полное дожигание с возвратом части тепла в ванну зоны плавления. Это второе принципиальное отличие предлагаемого способа от двухзонного процесса Ванюкова.

Предварительные расчеты показывают, что при переработке железосодержащих материалов на чугун площадь зоны восстановления должна соответствовать площади зоны плавления (в отличие от двухзонной печи Ванюкова). В этом случае можно существенно увеличить удельную производительность агрегата и снизить удельные расходы энергоносителей.

Принципиальные отличия предлагаемого способа от двухзонного процесса Ванюкова:

- горение углерода угля и углеводородов в зоне плавления с поддержанием CO/CO2 в пределах 0,01-0,50;

- максимально полное использование химического тепла отходящих газов в пространстве печи;

- другая организация газовых потоков в пространстве печи.

При снижении показателя CO/CO2 в зоне плавления ниже 0,01 в расплаве накапливается трехвалентное железо и выпадает в виде тугоплавкого расплава Fe3O4. Это приводит к расстройствам работы печи, перерасходу углерода на восстановление Fe3O4 до FeO и дополнительному расходу кислорода в зоне восстановления.

Повышение показателя CO/CO2 выше 0,50 приводит к частичному выпадению металлической фазы в виде низкоуглеродистого железа, что приводит к потерям железа и расстройствам в работе печи.

Из практики работы печи Ромелт известно, что устойчивая работа зоны восстановления при степенях дожигания (CO2/(CO2+CO)) выше 0,85 приводит к переокислению расплава, повышению содержания железа в отвальном шлаке и может привести к вскипаниям ванны. При этом повышаются удельные расходы угля и кислорода. Работа при степенях дожигания в восстановительной зоне менее 0,50 сопровождается ухудшением технико-экономических показателей работы печи.

В предлагаемом способе отходящие из зоны восстановления газы содержат значительные количества горючих газов, которые дожигаются за счет подачи кислородсодержащего газа над зоной плавления. От 30 до 70% тепла, выделяемого при дожигании газов, поступает в расплав зоны плавления. Это позволяет снизить удельные расходы угля и кислорода на 1 т получаемого чугуна.

Пример.

Для сравнения показателей работы печей в качестве сырья выбрана смесь доменных и кислородно-конвертерных шламов.

Химический состав этих шламов является достаточно стабильным для условий работы крупных металлургических комбинбатов (НЛМК, ЧерМК, ММК, ЗСМК). В настоящее время эти шламы практически не перерабатываются из-за повышенного содержания цинка и свинца, а складируются в шламовых отстойниках.

Химический состав шлама:

Feобщ=51,3%; FeO=17%; Fe2O3=54,4%; SiO2=6,7%; CaO=7,9%; ZnO=0,62%; PbO=0,11%; S=0,3%; P2O5=0,11%; C=9,2%; прочие = 3,66%. Влажность шлама - 10%.

В качестве энергоносителя принят уголь энергетический, по составу близкий к Анжерским OC, CC.

Технический состав угля:

Wp=10%; Ac=10,8%; Vc=14%; Sc=0,4%; Сф=74,8%.

Элементный состав летучих:

C=3,66%; H=4,3%; O=4,00%; N=2,04%.

Химический состав золы угля:

Fe2O3=10%; SiO2=54%; Al3O3=27,0%; CaO=3,8%; MgO=1,0%; P2O5=0,7%; прочие = 3,5%.

Количество перерабатываемого шлама - 40 т/ч. Для сравнения площадь печей принята равной 20 м2. Расход дутья на фурмы нижнего ряда принят на уровне 10000 нм3/ч, содержание кислорода в дутье - 70%.

Пылеунос шихтовых материалов во всех вариантах принят на максимальном уровне - 3%. Выход чугуна по трем вариантам составил около 18,6 т/ч. Содержание FeO в шлаке во всех вариантах 3%. Показатели работы печей по трем вариантам приведены в табл.1.

Таблица 1.
Показатели Способы
Ромелт Двухзонный Ванюкова Предлагаемый
1. Расход шлама, кг/т чугуна 2090 2090 2090
2. Расход угля, кг/т чугуна 1040 (100%) 910 (87,5%) 730 (70,2%)
3. Расход кислорода (95% O2) 1310 (100%) 1050 (80,2%) 850 (64,9%)

Из табл.1 видно, что удельные расходы энергоносителей по предлагаемому способу на 30-35% ниже, чем в одностадийной печи по технологии Ромелт. Показатели работы двухзонной печи по способу Ванюкова хуже, чем у предлагаемого на 15-17%.

Следует отметить, что при повышении производительности печи по чугуну до 30 т/ч удельные расходы энергоносителей по всем вариантам могут быть снижены на 20-30%. При этом относительная разница между вариантами остается неизменной.

В приведенном расчете в качестве железосодержащего материала принят высокозакисный железорудный материал. Не учитывалась необходимость офлюсования получаемого шлака из-за повышенной основности сталеплавильных шламов. При переработке гематитовых материалов с офлюсованием известняком разница в удельном расходе энергоносителей в предлагаемом способе по сравнению с процессом Ромелт будет достигать 40-50% по сравнению с двухзонным процессом Ванюкова - 20-30%.

Источник поступления информации: Роспатент

Showing 131-140 of 236 items.
10.01.2015
№216.013.1cc1

Способ получения листов из бор-содержащего алюмоматричного композиционного материала

Изобретение относится к области металлургии, в частности к бор-содержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании, в частности, с высоким уровнем поглощения при нейтронном...
Тип: Изобретение
Номер охранного документа: 0002538789
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cc2

Способ прессования порошковых материалов в стальной пресс-форме

Изобретение относится к порошковой металлургии, в частности к прессованию порошковых материалов в пресс-форме. Пресс-форма для прессования порошкового материала содержит нижний пуансон с лунками, шарики, большой и малый диски из пластичного материала одинакового состава, матрицу, верхний...
Тип: Изобретение
Номер охранного документа: 0002538790
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dde

Способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта

Изобретение относится к горному делу и может быть использовано при подземной разработке газоносных угольных пластов в условиях проявления опасных геодинамических явлений. Предложен способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта, включающий...
Тип: Изобретение
Номер охранного документа: 0002539074
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e01

Многопереходный кремниевый монокристаллический преобразователь оптических и радиационных излучений

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с). Согласно изобретению предложен кремниевый монокристаллический многопереходный фотоэлектрический преобразователь оптических и радиационных излучений, содержащий диодные...
Тип: Изобретение
Номер охранного документа: 0002539109
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.20bc

Спектральный эллипсометр с устройством магнитодинамических измерений

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п....
Тип: Изобретение
Номер охранного документа: 0002539828
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.20ea

Способ получения оксидной шихты, пригодной для производства цветных кристаллов корунда

Изобретение относится к способу получения оксидной шихты, пригодной для производства цветных кристаллов корунда, включающему анодное растворение сплава на основе алюминия высокой чистоты в водном растворе, содержащем катионы , Na или их смеси, отделение гидроксильного осадка, его промывку и...
Тип: Изобретение
Номер охранного документа: 0002539874
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.21a4

Износостойкий алмазный инструмент

Изобретение относится к области производства алмазных инструментов, в частности к алмазным инструментам, содержащим корпус и алмазные зерна, расположенные на корпусе в один и более слоев и удерживаемые металлическим связующим материалом. Износостойкий алмазный инструмент включает корпус с...
Тип: Изобретение
Номер охранного документа: 0002540060
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.23d2

Способ формирования высококачественных гетероструктур светоизлучающих диодов

Изобретение относится к области полупроводниковой оптоэлектроники и может быть использовано для создания высококачественных полупроводниковых светоизлучающих диодов (СИД) на основе гетероструктур соединений AB. Способ включает операцию облучения пластин с гетероструктурами интегральным потоком...
Тип: Изобретение
Номер охранного документа: 0002540623
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23fb

Способ получения наночастиц платиновых металлов

Изобретение относится к области нанотехнологий и может быть использовано в медицине, фармацевтике, косметологии. Наночастицы платиновых металлов получают в прозрачной жидкости на водной основе 7 при разрушении мишени 6 из платинового металла или сплава кавитацией, возникающей путем доставки...
Тип: Изобретение
Номер охранного документа: 0002540664
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2422

Сухая композиция для создания самовыравнивающихся быстротвердеющих наливных полов

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления быстротвердеющих самовыравнивающихся литых изделий и конструкций типа наливных полов промышленных и гражданских зданий, торговых и спортивных залов, автопарковок, гаражей. Сухая композиция...
Тип: Изобретение
Номер охранного документа: 0002540703
Дата охранного документа: 10.02.2015
Showing 131-140 of 243 items.
10.01.2015
№216.013.1763

Легирующий брикет для раскисления стали

Изобретение относится к области металлургии и может быть использовано для раскисления и легирования жидкой стали. Брикет получен методом прессования алюминиевого лома, железной и никелевой стружки при следующем соотношении компонентов, мас.%: алюминиевый лом 0,5-2, никелевая стружка 2-7,5,...
Тип: Изобретение
Номер охранного документа: 0002537415
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c0a

Способ получения высокочистого оксида алюминия электролизом

Изобретение относится к способу получения высокочистого оксида алюминия электролизом, включающему анодное растворение алюминия высокой чистоты в водном растворе хлорида аммония, отделение гидроксильного осадка, его промывку дистиллированной водой и прокаливание. Способ характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002538606
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cc1

Способ получения листов из бор-содержащего алюмоматричного композиционного материала

Изобретение относится к области металлургии, в частности к бор-содержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании, в частности, с высоким уровнем поглощения при нейтронном...
Тип: Изобретение
Номер охранного документа: 0002538789
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cc2

Способ прессования порошковых материалов в стальной пресс-форме

Изобретение относится к порошковой металлургии, в частности к прессованию порошковых материалов в пресс-форме. Пресс-форма для прессования порошкового материала содержит нижний пуансон с лунками, шарики, большой и малый диски из пластичного материала одинакового состава, матрицу, верхний...
Тип: Изобретение
Номер охранного документа: 0002538790
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dde

Способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта

Изобретение относится к горному делу и может быть использовано при подземной разработке газоносных угольных пластов в условиях проявления опасных геодинамических явлений. Предложен способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта, включающий...
Тип: Изобретение
Номер охранного документа: 0002539074
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e01

Многопереходный кремниевый монокристаллический преобразователь оптических и радиационных излучений

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с). Согласно изобретению предложен кремниевый монокристаллический многопереходный фотоэлектрический преобразователь оптических и радиационных излучений, содержащий диодные...
Тип: Изобретение
Номер охранного документа: 0002539109
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.20bc

Спектральный эллипсометр с устройством магнитодинамических измерений

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п....
Тип: Изобретение
Номер охранного документа: 0002539828
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.20ea

Способ получения оксидной шихты, пригодной для производства цветных кристаллов корунда

Изобретение относится к способу получения оксидной шихты, пригодной для производства цветных кристаллов корунда, включающему анодное растворение сплава на основе алюминия высокой чистоты в водном растворе, содержащем катионы , Na или их смеси, отделение гидроксильного осадка, его промывку и...
Тип: Изобретение
Номер охранного документа: 0002539874
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.21a4

Износостойкий алмазный инструмент

Изобретение относится к области производства алмазных инструментов, в частности к алмазным инструментам, содержащим корпус и алмазные зерна, расположенные на корпусе в один и более слоев и удерживаемые металлическим связующим материалом. Износостойкий алмазный инструмент включает корпус с...
Тип: Изобретение
Номер охранного документа: 0002540060
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.23d2

Способ формирования высококачественных гетероструктур светоизлучающих диодов

Изобретение относится к области полупроводниковой оптоэлектроники и может быть использовано для создания высококачественных полупроводниковых светоизлучающих диодов (СИД) на основе гетероструктур соединений AB. Способ включает операцию облучения пластин с гетероструктурами интегральным потоком...
Тип: Изобретение
Номер охранного документа: 0002540623
Дата охранного документа: 10.02.2015
+ добавить свой РИД