×
20.02.2015
216.013.281a

ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области измерительной техники и может использоваться в структуре различных датчиковых систем, в которых используются резистивные сенсоры, изменяющие свое сопротивление под физическим воздействием окружающей среды (давление, деформация, свет, температура, радиация, состав различных газов, влажность и т.п.). Устройство содержит измерительный мост, первый (1) вывод диагонали питания которого подключен к первой (2) шине источника питания, второй (3) вывод диагонали питания соединен со второй (4) общей шиной источника питания, а первый (5) и второй (6) выходы измерительной диагонали соединены со входами первого (7) дифференциального инструментального усилителя (ДИУ), первый (8) резистивный сенсор, включенный между первым (5) выходом измерительной диагонали и первым (1) выводом диагонали питания, второй (9) резистивный сенсор, включенный между первым (5) выходом измерительной диагонали и вторым (3) выводом диагонали питания, третий (10) резистивный сенсор, включенный между вторым (6) выходом измерительной диагонали и первым (1) выводом диагонали питания, четвертый (11) резистивный сенсор, включенный между вторым (6) выходом измерительной диагонали и вторым (3) выводом диагонали питания, первый (12) и второй (13) вспомогательные резисторы, включенные последовательно между выходом (14) ДИУ (7) и неинвертирующим входом вспомогательного ОУ (15), инвертирующий вход которого связан с выходом (16) данного вспомогательного ОУ (15), первый (17) корректирующий конденсатор, включенный между общим узлом (18) первого (12) и второго (13) вспомогательных резисторов и выходом (16) вспомогательного ОУ (15), второй (19) корректирующий конденсатор, включенный между неинвертирующим входом вспомогательного ОУ (15) и второй (4) общей шиной источника питания, первый (20) АЦП, вход которого соединен с выходом (16) вспомогательного ОУ (15). В схему введен дополнительный ДИУ (21), выход которого (22) подключен ко входу второго (23) АЦП, первый (24) вход дополнительного ДИУ (21) подключен к общему узлу (18) первого (12) и второго (13) вспомогательных резисторов, а второй (25) вход дополнительного ДИУ (21) подключен к неинвертирующему входу вспомогательного ОУ (15). Технический результат заключается в возможности формирования не только цифрового эквивалента входной измеряемой величины (x), но и цифрового эквивалента ее первой производной (), а также получение цифрового значения температуры сенсоров. 2 з.п. ф-лы, 17 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области измерительной техники и может использоваться в структуре различных датчиковых систем, в которых используются резистивные сенсоры, изменяющие свое сопротивление под физическим воздействием окружающей среды (давление, деформация, свет, температура, радиация, состав различных газов, влажность и т.п.).

Для измерения параметров газовых сред, температуры, изгиба, деформаций различных деталей широко применяются чувствительные элементы резистивные микро- и наносенсоры, включаемые в структуру так называемых измерительных мостов [1-11]. Данное техническое решение, как правило, предусматривает применение прецизионных измерительных усилителей, которые через фильтры низких частот подключаются ко входу аналого-цифровых преобразователей [1-6] или устройств цифровой обработки сигналов. Такая архитектура является классической [1-11].

Ближайшим прототипом заявляемого устройства является аналого-цифровой интерфейс фиг.1, представленный в патенте US 4.484.146. Он содержит измерительный мост, первый 1 вывод диагонали питания которого подключен к первой 2 шине источника питания, второй 3 вывод диагонали питания соединен со второй 4 общей шиной источника питания, а первый 5 и второй 6 выходы измерительной диагонали соединены со входами первого 7 дифференциального инструментального усилителя, первый 8 резистивный сенсор, включенный между первым 5 выходом измерительной диагонали и первым 1 выводом диагонали питания, второй 9 резистивный сенсор, включенный между первым 5 выходом измерительной диагонали и вторым 3 выводом диагонали питания, третий 10 резистивный сенсор, включенный между вторым 6 выходом измерительной диагонали и первым 1 выводом диагонали питания, четвертый 11 резистивный сенсор, включенный между вторым 6 выходом измерительной диагонали и вторым 3 выводом диагонали питания, первый 12 и второй 13 вспомогательные резисторы, включенные последовательно между выходом 14 дифференциального инструментального усилителя 7 и неинвертирующим входом вспомогательного операционного усилителя 15, инвертирующий вход которого связан с выходом 16 данного вспомогательного операционного усилителя 15, первый 17 корректирующий конденсатор, включенный между общим узлом 18 первого 12 и второго 13 вспомогательных резисторов и выходом 16 вспомогательного операционного усилителя 15, второй 19 корректирующий конденсатор, включенный между неинвертирующим входом вспомогательного операционного усилителя 15 и второй 4 общей шиной источника питания, первый 20 аналого-цифровой преобразователь, вход которого соединен с выходом 16 вспомогательного операционного усилителя 15.

Существенный недостаток известного устройства фиг.1 состоит в том, что оно не обеспечивает формирование сигнала, пропорционального производной входной измеряемой величины. Это не позволяет использовать данное техническое решение в новых и перспективных системах адаптивного управления, для эффективного функционирования которых необходимо располагать информацией о скорости изменения входного сигнала (его производной).

Кроме этого, известная схема характеризуется нелинейной температурной зависимостью выходных сигналов, которая связана с нестабильностью свойств микро- и наносенсоров при воздействии на них данного дестабилизирующего фактора.

Основная задача предлагаемого изобретения состоит в формировании не только цифрового эквивалента входной измеряемой величины (x), но и цифрового эквивалента ее первой производной ( ), а также получении цифрового значения температуры сенсоров. Данная информация может использоваться в дальнейшем для введения соответствующих коррекций в измерительные характеристики конкретной датчиковой системы, которые на практике реализуются микропроцессорами.

Поставленная задача достигается тем, что в прецизионном аналого-цифровом интерфейсе для работы с резистивными микро- и наносенсорами фиг.1, содержащем измерительный мост, первый 1 вывод диагонали питания которого подключен к первой 2 шине источника питания, второй 3 вывод диагонали питания соединен со второй 4 общей шиной источника питания, а первый 5 и второй 6 выходы измерительной диагонали соединены со входами первого 7 дифференциального инструментального усилителя, первый 8 резистивный сенсор, включенный между первым 5 выходом измерительной диагонали и первым 1 выводом диагонали питания, второй 9 резистивный сенсор, включенный между первым 5 выходом измерительной диагонали и вторым 3 выводом диагонали питания, третий 10 резистивный сенсор, включенный между вторым 6 выходом измерительной диагонали и первым 1 выводом диагонали питания, четвертый 11 резистивный сенсор, включенный между вторым 6 выходом измерительной диагонали и вторым 3 выводом диагонали питания, первый 12 и второй 13 вспомогательные резисторы, включенные последовательно между выходом 14 дифференциального инструментального усилителя 7 и неинвертирующим входом вспомогательного операционного усилителя 15, инвертирующий вход которого связан с выходом 16 данного вспомогательного операционного усилителя 15, первый 17 корректирующий конденсатор, включенный между общим узлом 18 первого 12 и второго 13 вспомогательных резисторов и выходом 16 вспомогательного операционного усилителя 15, второй 19 корректирующий конденсатор, включенный между неинвертирующим входом вспомогательного операционного усилителя 15 и второй 4 общей шиной источника питания, первый 20 аналого-цифровой преобразователь, вход которого соединен с выходом 16 вспомогательного операционного усилителя 15, предусмотрены новые элементы и связи - в схему введен дополнительный дифференциальный инструментальный усилитель 21, выход которого 22 подключен ко входу второго 23 аналого-цифрового преобразователя, первый 24 вход дополнительного дифференциального инструментального усилителя 21 подключен к общему узлу 18 первого 12 и второго 13 вспомогательных резисторов, а второй 25 вход дополнительного дифференциального инструментального усилителя 21 подключен к неинвертирующему входу вспомогательного операционного усилителя 15.

На чертеже фиг.1 приведена схема прецизионного аналого-цифрового интерфейса-прототипа.

На чертеже фиг.2 представлена схема заявляемого устройства в соответствии с п.1 формулы изобретения.

На чертеже фиг.3 представлена схема заявляемого устройства в соответствии с п.2 формулы изобретения.

На чертеже фиг.4 представлена схема заявляемого устройства в соответствии с п.3 формулы изобретения.

На чертеже фиг.5 показан пример построения основных функциональных узлов схемы фиг.4 с использованием так называемых мультидифференциальных операционных усилителей, схемотехника которых широко представлена в современной технической литературе [12].

На чертеже фиг.6 приведена амплитудно-частотная характеристика (АЧХ) канала измерения в диапазоне рабочих частот физической величины, воздействующей на сенсоры.

На чертеже фиг.7 представлена фазочастотная характеристика (ФЧХ) канала измерения физической величины в диапазоне рабочих частот, демонстрирующая высокую линейность и, следовательно, низкую погрешность измерения формы соответствующего сигнала.

На чертеже фиг.8 показана частот погрешность ФЧХ канала измерения физической величины в диапазоне рабочих.

На чертеже фиг.9 приведена зависимость погрешности ФЧХ канала измерения производной от дифференциального коэффициента передачи (Kd) дополнительного дифференциального инструментального усилителя 21 канала измерения производной физической величины.

На чертеже фиг.10 показано влияние отклонения емкости третьего 28 корректирующего конденсатора (±1%) на неравномерность АЧХ канала измерения физической величины.

На чертеже фиг.11 показано влияние отклонения емкости третьего 28 корректирующего конденсатора (±1%) на погрешность ФЧХ канала измерения физической величины.

На чертеже фиг.12 показано влияние отклонения h (±0,5%) на неравномерность АЧХ канала измерения физической величины, где h -отношение емкостей первого 17 и третьего 28 корректирующих конденсаторов.

На чертеже фиг.13 показано влияние отклонения параметра h (±0,5%) на погрешность ФЧХ канала измерения физической величины.

На чертеже фиг.14 приведена АЧХ канала измерения производной измеряемой физической величины.

На чертеже фиг.15 показана ФЧХ канала измерения производной измеряемой физической величины при коэффициенте передачи Kd=15,208, где Kd - дифференциальный коэффициент передачи дополнительного дифференциального инструментального усилителя 21.

На чертеже фиг.16 приведены результаты моделирования канала измерения физической величины во временной области.

На чертеже фиг.17 приведены результаты моделирования канала измерения производной во временной области.

Прецизионный аналого-цифровой интерфейс для работы с резистивными микро- и наносенсорами фиг.2 содержит измерительный мост, первый 1 вывод диагонали питания которого подключен к первой 2 шине источника питания, второй 3 вывод диагонали питания соединен со второй 4 общей шиной источника питания, а первый 5 и второй 6 выходы измерительной диагонали соединены со входами первого 7 дифференциального инструментального усилителя, первый 8 резистивный сенсор, включенный между первым 5 выходом измерительной диагонали и первым 1 выводом диагонали питания, второй 9 резистивный сенсор, включенный между первым 5 выходом измерительной диагонали и вторым 3 выводом диагонали питания, третий 10 резистивный сенсор, включенный между вторым 6 выходом измерительной диагонали и первым 1 выводом диагонали питания, четвертый 11 резистивный сенсор, включенный между вторым 6 выходом измерительной диагонали и вторым 3 выводом диагонали питания, первый 12 и второй 13 вспомогательные резисторы, включенные последовательно между выходом 14 дифференциального инструментального усилителя 7 и неинвертирующим входом вспомогательного операционного усилителя 15, инвертирующий вход которого связан с выходом 16 данного вспомогательного операционного усилителя 15, первый 17 корректирующий конденсатор, включенный между общим узлом 18 первого 12 и второго 13 вспомогательных резисторов и выходом 16 вспомогательного операционного усилителя 15, второй 19 корректирующий конденсатор, включенный между неинвертирующим входом вспомогательного операционного усилителя 15 и второй 4 общей шиной источника питания, первый 20 аналого-цифровой преобразователь, вход которого соединен с выходом 16 вспомогательного операционного усилителя 15. В схему введен дополнительный дифференциальный инструментальный усилитель 21, выход которого 22 подключен ко входу второго 23 аналого-цифрового преобразователя, первый 24 вход дополнительного дифференциального инструментального усилителя 21 подключен к общему узлу 18 первого 12 и второго 13 вспомогательных резисторов, а второй 25 вход дополнительного дифференциального инструментального усилителя 21 подключен к неинвертирующему входу вспомогательного операционного усилителя 15.

На чертеже фиг.2 последовательно с третьим 10 резистивным сенсором может включаться низкооомный вспомогательный резистор, обеспечивающий заданный уровень асимметрии измерительного моста.

Цифровые эквиваленты входной измеряемой величины D1.x…Dn.x и ее производные передаются в микропроцессор для последующей обработки.

На чертеже фиг.3, в соответствии с п.2 формулы изобретения, между выходом 14 первого 7 дифференциального инструментального усилителя и первым 26 выводом первого 12 вспомогательного резистора, не связанным со вторым 13 вспомогательным резистором, включен третий 27 вспомогательный резистор, а между первым 26 выводом первого 12 вспомогательного резистора и второй 4 общей шиной источника питания включен третий 28 корректирующий конденсатор.

На чертеже фиг.4, в соответствии с п.3 формулы изобретения, в схему введен датчик температуры 29 первого 8, второго 9, третьего 10 и четвертого 11 резистивных сенсоров, связанный со входом измерительного преобразователя «температура-напряжение» 30, выход которого соединен со входом фильтра низких частот 31, причем выход 32 фильтра низких частот 31 подключен ко входу третьего 33 аналого-цифрового преобразователя.

На чертеже фиг.5 показан пример практического построения заявляемого устройства на современной элементной базе. Здесь дифференциальный инструментальный усилитель 7 реализован на основе мультидифференциального ОУ (МОУ) [12] и включает резисторы обратной связи 34, 35. Дополнительный дифференциальный инструментальный усилитель 21 реализован на МОУ 36 и резисторах обратной связи 37, 38. Измерительный преобразователь «температура-напряжение» 30 выполнен на основе резисторов 39, 40, 41, 43 и операционного усилителя 42. Фильтр низких частот 31 реализован в соответствии с фиг.2 и содержит резисторы 44, 45, операционный усилитель 46, конденсаторы 47 и 48. Входные 5, 6 и выходные 22, 16, 32 узлы схемы фиг.5 имеют такие же обозначения, как и соответствующие узлы схемы фиг.4.

Рассмотрим работу устройства фиг.2.

Воздействие измеряемой физической величины на сопротивления резистивных сенсоров 8-10 приводит к изменению дифференциального напряжения на выходах 5, 6 измерительной диагонали моста и на соответствующих входах дифференциального инструментального усилителя 7. В силу идентичности сопротивлений резисторов 8-10 (микро- или наносенсоры) синфазные напряжения, вызванные действием источника опорного напряжения 2 на этих же входах идентичны. Выделение и усиление дифференциальным инструментальным усилителем 7 дифференциального напряжения сопровождается ослаблением синфазного сигнала до уровня, соответствующего методической точности первого 20 и второго 23 АЦП. Таким образом, на вход ограничителя спектра (элементы 12, 13, 15, 17, 19) поступает усиленное дифференциальное напряжение, пропорциональное измеряемой физической величине. Наряду с дифференциальным напряжением дифференциальный инструментальный усилитель 7 усиливает собственные шумы сенсоров 8-10 измерительного моста, что в процессе аналого-цифрового преобразования приводит к появлению разностных спектральных составляющих между частотой дискретизации и частотами усиленных дифференциальным инструментальным усилителем 7 шумовых составляющих общего спектра измеряемого процесса. Для уменьшения амплитуд этих разностных составляющих используется фильтр нижних частот третьего порядка (ФНЧ, ограничитель спектра), реализованный на первом 12 и втором 13 вспомогательных резисторах, первом 17 и втором 19 корректирующих конденсаторах и вспомогательном операционном усилителе 15. Наличие цепи обратной связи путем подключения первого 17 корректирующего конденсатора к выходу вспомогательного операционного усилителя 15 позволяет эффективно использовать порядок этого фильтра в переходной области частот путем повышения ее «прямоугольности» и, следовательно, уменьшения погрешности преобразования спектральных составляющих в полосе пропускания (диапазоне рабочих частот сенсоров).

Путем подключения второго 13 вспомогательного резистора к дифференциальным входам дополнительного дифференциального инструментального усилителя 21 можно выделить дифференциальную составляющую измеряемой физической величины. Причем диапазон рабочих частот для этой составляющей будет определяться полосой пропускания фильтра нижних частот (элементы 12, 13, 15, 17, 19).

Действительно, как это следует из схемы фиг.2, напряжение на втором корректирующем конденсаторе 19 и на выходе вспомогательного операционного усилителя 15 определяется интегралом тока, протекающего через второй 13 вспомогательный резистор. При условии, что входное сопротивление вспомогательного операционного усилителя 15 значительно больше сопротивления второго 13 вспомогательного резистора, падение напряжения на этом резисторе будет соответствовать дифференциалу напряжения на выходе 16.

Математический анализ предлагаемого устройства выполним для интерфейса фиг.3, т.к. при отсутствии третьего 27 вспомогательного резистора и третьего 28 корректирующего конденсатора (выход дифференциального инструментального усилителя 7 непосредственно подключен к первому 12 вспомогательному резистору) реализуется канал частотной фильтрации, показанный на фиг.2. Используя метод анализа линейных электронных схем, можно показать, что на выходах 16 и 22 реализуются следующие передаточные функции

где K7, K21 - дифференциальные коэффициенты усиления дифференциальных инструментальных усилителей 7 и 21;

R13, C19 - сопротивление и емкость элементов схемы 13 и 19.

В этих соотношениях коэффициенты ai передаточных функций определяются следующим образом

где Rij, Cij - сопротивления и емкости элементов схемы с номером ij ;

Из соотношений (3) следует, что в силу аддитивного принципа формирования всех коэффициентов передаточных функций (1) и (2) каналы измерения физической величины и ее производной характеризуются низкой параметрической чувствительностью

Кроме этого, требование небольшой неравномерности АЧХ ограничителя спектра в полосе пропускания (рабочем диапазоне частот сенсоров), в соответствии со свойствами их аппроксимирующих функций (Гаусса, Баттерворта, Чебышева) связаны с реализацией низкой добротности доминирующего полюса (1,0-1,5 единиц). Именно поэтому предлагаемые решения задачи обеспечивают низкую параметрическую чувствительность ко всем элементам схемы.

В этой связи при практической реализации интерфейса можно использовать дополнительные параметрические условия:

Тогда

Отметим, что соотношения (6), с точностью до отношений номиналов однотипных элементов, соответствуют структуре лестничного (теоретически оптимального по параметрической чувствительности) фильтра нижних частот ФНЧ. Этот вывод подтверждается результатами моделирования практической схемы интерфейса, приведенными на чертежах фиг.10-13. При этом можно достаточно строго показать, что последний вывод справедлив при выполнении неравенства

где f1 - частота единичного усиления усилителя 15;

fc - диапазон рабочих частот сенсора (чувствительного элемента). Из передаточных функций (2) и (1) (в силу свойств преобразования Лапласа) следует, что

где uвых.16(t) и uвых.22(t) - выходные напряжения на узлах 16 и 22. Таким образом, предлагаемые структуры и принципиальные схемы интерфейсов обеспечивают не только высокую точность измерения физической величины, но и измерение (или оценку) ее производной. Этот вывод демонстрируется на чертежах фиг.6 и фиг.7. Здесь под оценкой понимается в общем случае несогласованность длительности переходных процессов (функции (1) и (2)) рассматриваемых каналов интерфейса. Из соотношения (8) также следует, что отсутствие разностных членов сохраняет низкую параметрическую чувствительность канала оценки производной

На результирующую точность измерения (оценки) производной измеряемой величины влияет также фазовая погрешность канала преобразования, которая согласно (1) обусловлена дифференцированием сигнала только в полосе пропускания ФНЧ (фиг.14). Можно достаточно строго показать, что для -ой гармонической составляющей входного сигнала и, следовательно, измеряемой величины, максимальное отклонение определяется из соотношения

где - амплитудное значение производной l-й гармонической составляющей;

, - круговая частота и паразитный фазовый сдвиг -й гармонической составляющей.

Из приведенного соотношения видно, что максимальная погрешность соответствует абсолютному минимуму производной, а повышение точности (уменьшение ) возможно путем уменьшения эффективной полосы пропускания ФНЧ и, следовательно, при заданной (требуемой) селективности путем повышения порядка его передаточной функции. ФЧХ, приведенные на фиг.8 и фиг.15, наглядно демонстрируют этот вывод. К этому же результату приводит и дополнительная погрешность дополнительного дифференциального инструментального усилителя 21 (фиг.9), связанная с влиянием на ФЧХ коэффициента ослабления входного синфазного напряжения. Результаты моделирования практической схемы интерфейса, подтверждающие этот вывод, показаны на чертежах фиг.16 и фиг.17. При этом, как видно из временных диаграмм фиг.17, для неизменной производной (базовый случай при измерении физических величин) погрешность ее оценки связана переходными процессами в канале ее измерения.

Из графиков фиг.7 в частности следует, что реализация линейной ФЧХ обеспечивает высокую точность измерения кратковременных (импульсных) входных воздействий.

Таким образом, заявляемое устройство характеризуется сравнительно малыми значениями погрешностей измерения физической величины и оценки ее производной.

Выполненный выше анализ, а также результаты компьютерного моделирования показывают, что в предлагаемом прецизионном аналого-цифровом интерфейсе (фиг.2) решена одна из проблем современной измерительной техники - получение цифрового эквивалента производной измеряемой физической величины, информация о которой существенно расширяет возможности построения на его основе систем адаптивного управления различными объектами, а также цифрового эквивалента температуры сенсоров, последнее свойство позволяет вводить с помощью микропроцессора необходимую коррекцию температурных ошибок измерения физической величины. Кроме этого, в схеме может обеспечиваться диагностика состояния резистивных наносенсоров 8-10.

Источники информации

1. Патент RU №2.247.325

2. Патент RU №2.380.714

3. Патент RU №2.265.229

4. Патент US №8.330.537

5. Заявка на патент US №2012/01860091

6. Патент ЕР №1.703.262

7. Патент US №4.063.447

8. Патент SU №1.830.463

9. Патент RU №2.304.284

10. Заявка на патент US №2001/0035758

11. Заявка на патент US №2003/0916033

12. Мультидифференциальный операционный усилитель в режиме инструментального усилителя [Текст] / С.Г. Крутчинский, Титов А.Е. // Научно-технические ведомости СПбГПУ «Информатика, Телекоммуникации и управление», №3 (101), 2010. - С.200-204.


ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
ПРЕЦИЗИОННЫЙ АНАЛОГО-ЦИФРОВОЙ ИНТЕРФЕЙС ДЛЯ РАБОТЫ С РЕЗИСТИВНЫМИ МИКРО- И НАНОСЕНСОРАМИ
Источник поступления информации: Роспатент

Showing 1-10 of 245 items.
27.01.2013
№216.012.215a

Избирательный усилитель

Изобретение относится к области радиотехники и связи. Техническим результатом является повышение добротности АЧХ усилителя и его коэффициента усиления по напряжению на частоте квазирезонанса f. Избирательный усилитель, содержит первый (1) входной транзистор, источник входного сигнала (2),...
Тип: Изобретение
Номер охранного документа: 0002474039
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.215b

Избирательный усилитель

Предлагаемое изобретение относится к области радиотехники и связи и может использоваться в устройствах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п. Техническим результатом является повышение добротности АЧХ усилителя и его коэффициента...
Тип: Изобретение
Номер охранного документа: 0002474040
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.24ea

Операционный усилитель

Изобретение относится к области радиотехники и связи. Техническим результатом является уменьшение входного статического тока ОУ, а также повышение быстродействия ОУ при импульсных входных сигналах. Операционный усилитель содержит первый (1) и второй (2) входные транзисторы, неинвертирующий вход...
Тип: Изобретение
Номер охранного документа: 0002474952
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.24eb

Дифференциальный усилитель с расширенным диапазоном изменения входного синфазного сигнала

Изобретение относится к области радиотехники и связи. Техническим результатом является расширение допустимого диапазона изменения входных синфазных сигналов на 0,7÷0,8, что является существенным улучшением одного из важных качественных показателей ДУ. Дифференциальный усилитель с расширенным...
Тип: Изобретение
Номер охранного документа: 0002474953
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.24ec

Токовое зеркало

Изобретение относится к области радиотехники и связи. Техническим результатом является повышение точности передачи малых входных токов токового зеркала Вильсона при его реализации на p-n-p транзисторах с изоляцией p-n переходами на подложку. Токовое зеркало содержит первый (1) входной...
Тип: Изобретение
Номер охранного документа: 0002474954
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.28b1

Избирательный усилитель

Изобретение относится к области радиотехники и связи. Техническим результатом является повышение добротности АЧХ усилителя и его коэффициента усиления по напряжению на частоте квазирезонанса f. Избирательный усилитель содержит источник сигнала (1), связанный со входом устройства (2), первый (3)...
Тип: Изобретение
Номер охранного документа: 0002475937
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.28b2

Избирательный усилитель

Изобретение относится к области радиотехники и связи. Техническим результатом является повышение добротности АЧХ усилителя и его коэффициента усиления по напряжению на частоте квазирезонанса f. Избирательный усилитель содержит входной транзистор (1), эмиттер которого через первый (2)...
Тип: Изобретение
Номер охранного документа: 0002475938
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.28b3

Избирательный усилитель

Изобретение относится к области радиотехники и связи и может использоваться в устройствах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п. Технический результат заключается в повышении добротности АЧХ усилителя и его коэффициента усиления по...
Тип: Изобретение
Номер охранного документа: 0002475939
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.28b4

Радиационно-стойкий дифференциальный усилитель

Изобретение относится к области радиотехники и связи. Техническим результатом является повышение стабильности коэффициента усиления по напряжению при радиационном воздействии. Радиационно-стойкий дифференциальный усилитель содержит входной дифференциальный каскад (1) с общей эмиттерной цепью...
Тип: Изобретение
Номер охранного документа: 0002475940
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.28b5

Дифференциальный усилитель с комплементарным входным каскадом

Изобретение относится к области радиотехники и связи. Техническим результатом является обеспечение высокой стабильности статического режима дифференциального усилителя и повышение значения его коэффициента усиления по напряжению. Дифференциальный усилитель с комплементарным входным каскадом...
Тип: Изобретение
Номер охранного документа: 0002475941
Дата охранного документа: 20.02.2013
Showing 1-10 of 262 items.
20.04.2014
№216.012.bb74

Быстродействующий аналого-цифровой преобразователь с дифференциальным входом

Изобретение относится к области измерительной и вычислительной техники, радиотехники и связи. Технический результат заключается в расширении в несколько раз предельного частотного диапазона обрабатываемых входных сигналов АЦП за счет снижения погрешности передачи входных дифференциальных...
Тип: Изобретение
Номер охранного документа: 0002513716
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c282

Быстродействующий драйвер дифференциальной линии связи

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления и преобразования аналоговых сигналов, в структуре «систем на кристалле» и «систем в корпусе» различного функционального назначения (например, операционных усилителей, работающих на...
Тип: Изобретение
Номер охранного документа: 0002515543
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cacc

Быстродействующий датчик физических величин с потенциальным выходом

Изобретение относится к области информационно-измерительной техники и автоматики и может быть использовано в датчиках, обеспечивающих измерение различных физических величин. Техническим результатом является повышение быстродействия датчика за счет минимизации влияния внутренней емкости 2...
Тип: Изобретение
Номер охранного документа: 0002517682
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cadc

Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов

Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов относится к области измерительной техники, электротехники, радиотехники и связи и может использоваться в структуре различных интерфейсов, в измерительных приборах, быстродействующих аналого-цифровых (АЦП)...
Тип: Изобретение
Номер охранного документа: 0002517698
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cfea

Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом

Изобретение относится к области измерительной и вычислительной техники, радиотехники и связи. Технический результат: расширение в несколько раз частотного диапазона обрабатываемых сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников входных...
Тип: Изобретение
Номер охранного документа: 0002518997
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d149

Управляемый усилитель и смеситель аналоговых сигналов на базе дифференциального каскада дарлингтона

Предлагаемое изобретение относится к области радиотехники и связи и может быть использовано в радиоприемных устройствах, фазовых детекторах и модуляторах, а также в системах умножения частоты или в качестве усилителя, коэффициент передачи по напряжению которого с входов канала «X» зависит от...
Тип: Изобретение
Номер охранного документа: 0002519348
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d190

Широкополосный повторитель напряжения

Изобретение относится к области радиотехники и связи. Техническим результатом является расширение диапазона рабочих частот широкополосного повторителя напряжения при наличии емкости на выходе С, которая не может быть уменьшена по объективным причинам - является неотъемлемой частью цепи...
Тип: Изобретение
Номер охранного документа: 0002519419
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d19a

Измерительный усилитель с управляемыми параметрами амплитудно-частотной характеристики

Изобретение относится к области измерительной техники, радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Технический результат заключается в увеличении затухания выходного сигнала в диапазоне низких частот при повышенной и достаточно...
Тип: Изобретение
Номер охранного документа: 0002519429
Дата охранного документа: 10.06.2014
10.07.2014
№216.012.dbc8

Быстродействующий драйвер емкостной нагрузки

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления и преобразования аналоговых и цифровых импульсных сигналов в устройствах различного функционального назначения, работающих на емкостную нагрузку. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002522042
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e026

Компенсационный стабилизатор напряжения

Устройство относится к области электротехники. Технический результат заключается в получении температурно-стабильного выходного напряжения и снижении минимальной разности напряжения вход-выход стабилизатора. Для этого предложен стабилизатор напряжения, содержащий первый и второй транзисторы,...
Тип: Изобретение
Номер охранного документа: 0002523168
Дата охранного документа: 20.07.2014
+ добавить свой РИД