×
20.01.2015
216.013.1fb0

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса. Сплав на основе кобальта содержит, мас.%: хром - 17,4-21,1; кремний - 2,6-4,9; рений - 3,0-5,0; цирконий - 4,0-6,0; церий - 0,2-0,6; лантан - 0,1-0,5; иттрий - 0,3-0,7; алюминий - 2,0-4,0; борид титана - 10,0-12,5; нитрид бора - 10,0-12,5; Co - остальное. Изобретение позволяет увеличить микротвердость, адгезионную прочность и коррозионную стойкость покрытий. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к прецизионным сплавам, предназначенным для реализации микрометаллургических процессов, конкретно к сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса.

Сплавы на основе кобальта, в силу своих широких эксплуатационных возможностей, весьма популярны в микрометаллургии для получения порошковых материалов, защитных пленок и покрытий.

Прежде всего, кобальтовые сплавы, особенно в тонких сечениях, имеют преимущества в части высоких физико-механических свойств, в т.ч. по одной из важнейших характеристик - микротвердости.

В частности, известны сплавы для получения порошков, а также перспективные кобальтовые сплавы для получения быстрозакаленных сплавов и покрытий методами распыления расплава и газотермического напыления, в частности, составы которых приведены в Таблице 1. Следует особо отметить, что каждая из перечисленных групп сплавов разрабатывалась с учетом специфических особенностей их технологического использования.

В связи с существенным ужесточением условий эксплуатации элементов конструкций в направлении увеличения механических нагрузок (циклическое, динамическое и эрозионное воздействие), расширением интервала рабочих температур в области положительных и отрицательных значений и необходимостью увеличения коррозионной стойкости при воздействии агрессивных химических реагентов, современные функциональные покрытия должны иметь следующие основные технические характеристики:

- адгезионная прочность покрытия с подложкой не менее 30 МПа;

- микротвердость покрытия не менее 3 ГПа;

- диапазон рабочих температур от -60 до +500°C;

- коррозионная стойкость не ниже 3-4 балла (класс стойкости 2; 3).

Ни один из известных сплавов не позволяет получать функциональные покрытия с такими характеристиками. Экспериментально установлено, что наилучшими характеристиками обладают покрытия, полученные из кобальтовых сплавов, химический состав которых приведен в патентах [1-2], микротвердость этих покрытий достигает 1,7 ГПа. Поэтому для удовлетворения современных требований к функциональным покрытиям необходимо разработать новые составы сплава, адаптированные к условиям получения покрытий методами гетерофазного переноса.

В качестве прототипа выбран прецизионный сплав на основе кобальта для изготовления высокопрочных аморфных материалов в виде лент методом высокоскоростной закалки расплава [3].

Сплав имеет следующий состав (масс. %): железо 1,8-4, никель 6,2-8, бор 8-10, кремний 10-12, церий 0,6-1,2, иттрий 0,2-0,8, хром 2-3,5, цирконий 0,5-1,5, кобальт - остальное.

Недостатками покрытия, полученного с использованием данного сплава, являются: низкая микротвердость покрытий (менее 3 ГПа), недостаточная адгезионная прочность покрытия с подложкой (менее 30 МПа), низкая коррозионная стойкость, не превышающая 3-4 балла, и не достигается требуемого интервала рабочих температур от -60 до +500°C.

Техническим результатом изобретения является повышение микротвердости получаемых покрытий, адгезионной прочности и коррозионной стойкости до требуемых значений, а также увеличение диапазона рабочих температур.

Технический результат достигается за счет того, что сплав на основе кобальта, содержащий хром, кремний, цирконий, иттрий, церий, в соответствии с изобретением, с целью увеличения микротвердости, адгезионной прочности покрытий, коррозионной стойкости и расширения интервала температурной стабильности в области положительных и отрицательных температур, дополнительно содержит рений, лантан, алюминий, борид титана и нитрид бора. Причем хром и кремний вводят в сплав в виде устойчивого интерметаллического соединения Cr3Si, а вводимые в сплав частицы TiB2 и BN имеют размер 30-80 нм. Соотношение компонентов в сплаве следующее (масс.%):

Cr - 17,4-21,1; Si - 2,6-4,9; Re - 3,0-5,0; Zr - 4,0-6,0; Ce - 0,2-0,6; La - 0,1-0,5; Y - 0,3-0,7; Al - 2,0-4,0; TiB2 - 10,0-12,5; BN - 10,0-12,5; Co - основа.

В соответствии с изобретением, оптимальное соотношение между TiB2 и BN в сплаве составляет 1:1.

В качестве базовой композиции выбрана тройная система Co-Cr-Si. Причем наибольший эффект повышения микротвердости, как показали эксперименты, достигается при введении в основу (кобальт) 20-26% устойчивого интерметаллида Cr3Si, что соответствует содержанию в сплаве 17,4-21,1% Cr и 2,6-4,9% Si. В зависимости от вида термомеханической обработки микротвердость чистого кобальта достигает 1,6-2,1 ГПа, для покрытий эта величина, как правило, не превышает 1,8 ГПа. При введении устойчивого интерметаллида Cr3Si наблюдается существенное повышение микротвердости сплава до 3,6 ГПа.

Содержание интерметаллида Cr3Si в количестве 20-26% является оптимальным, т.к. при меньшем, чем 20%, требуемого эффекта повышения микротвердости не наблюдается, а при большем, чем 26%, сплав становится хрупким и при получении покрытия отслаивается от подложки.

Для достижения требуемого высокого уровня функциональных свойств, в тройной сплав системы Co-Cr-Si последовательно вводится рений, цирконий и алюминий.

Введение рения в количестве 3-5% обеспечивает повышения температурной стабильности до 520-550°C по сравнению с 340-360°C для тройного сплава Co-Cr-Si. Этот эффект наблюдается, начиная с 3% Re, а при содержании Re более 5%, так же как и при введении интерметаллида Cr3Si более 26%, наблюдается охрупчивание сплава и покрытий на его основе.

Указанный четырехкомпонентный сплав Co-Cr-Si-Re устойчив в области отрицательных температур только до -40°C. При более низких температурах происходит отслаивание покрытий из этого сплава от подложки. Для повышения хладостойкости до требуемых -60°C (обеспечивающих эксплуатацию элементов конструкций в условиях крайнего Севера и Арктики), в сплав дополнительно вводится цирконий (в количестве 4-6%), эффективно способствующий измельчению зерна и тем самым повышающий хладостойкость. Этот эффект наблюдается, начиная с 4% Zr, и реализуется до 6% Zr, при этом в сплаве снижается эффект, достигнутый за счет введения Re, т.е снижается до 420-430°C температурная стабильность сплава при положительных температурах.

Однако коррозионная стойкость сплава системы Co-Cr-Si-Re-Zr не превышает 3-4 балла (класс стойкости 2; 3). Практика показывает, что в сплав в этом случае необходимо ввести элемент, образующий на поверхности функционального покрытия пассивирующие пленки. Наиболее эффективно это достигается за счет введения алюминия, образующего на поверхности сплава пассивирующие пленки сложного состава Cr2O3-Al2O3. Это достигается при оптимальном количестве алюминия в сплаве от 2,0 до 4,0%.

Прецизионность любого микрометаллургического процесса эффективно обеспечивается за счет комплексного введения эффективных модификаторов в виде малых добавок редкоземельных элементов, имеющих наибольшее сродство к кислороду, водороду и азоту - соответственно церия, лантана и иттрия.

Введение указанных малых добавок очищает сплав от неметаллических включений и обеспечивает протекание устойчивых процессов нанесения покрытий. Это возможно при комплексном введении указанных редкоземельных элементов (РЗЭ) в количестве, не превышающем в сумме 1,8%. Экспериментально установлено, что поэлементное содержание церия должно быть (0,2-0,6)%, лантана (0,1-0,5)%, иттрия (0,3-0,7)%, при большем количестве каждого из указанных РЗЭ и их суммарном содержании более 1,8% образуются фазы, негативно влияющие на стабильность протекания микрометаллургических процессов. Образование неметаллических фаз приводит к неоднородности структуры, прежде всего к появлению многочисленных границ раздела, это приводит к возможности питтинговой коррозии и уменьшению микротвердости на межфазных границах. Экспериментально установлено, что эти явления приводят к возникновению микротрещин, которые, в свою очередь, могут приводить к разрушению покрытия в целом в ходе эксплуатации. Поэтому указанное выше комплексное введение РЗЭ и их суммарное содержание не более 1,8% является оптимальным, так как метастабильные фазы не образуются и, соответственно, удается достичь требуемых характеристик с точки зрения коррозионной стойкости, микротвердости и, как следствие, адгезионной прочности и интервала температурной стабильности.

Однако, как показали испытания, получить указанные выше требуемые свойства из сплава системы Co-Cr-Si-Re-Zr-Ce-La-Y-Al не удается. Имеет место низкая адгезия (адгезионная прочность покрытия с подложкой на отрыв штифтовым методом не превышает 20,6 МПа) и относительно низкое значение микротвердости (не более 3,6 ГПа). Практика и проводимые исследования [4] показывают, что наиболее эффективным для повышения указанных характеристик является введение в металлическую матрицу наноразмерных (фракция 30-80 нм) частиц из тугоплавких химических соединений.

Практика показывает, что наибольшего упрочняющего эффекта при создании функциональных покрытий можно достичь при комплексном введении наноматериалов разных классов, имеющих различную кристаллографическую структуру (например, бориды и нитриды, оксиды и нитриды, нитриды и карбиды и т.д.). Это приводит к существенной фрагментации матричной структуры, возникновению остаточных сжимающих напряжений на межфазных границах и, как следствие, значительному увеличению микротвердости сплава.

Исходя из этого установлено, что оптимальным для сплава системы Co-Cr-Si является введение боридов в сочетании с нитридами. Конкретно оптимальный эффект увеличения микротвердости достигается при введении 20-25% (TiB2+BN) при соотношении между ними 1:1. При этом адгезионная прочность покрытия с подложкой достигает 30-35 МПа, а микротвердость повышается до 4,6 ГПа.

При меньшем количестве вводимых дисперсных частиц и другом фракционном составе эффект увеличения микротвердости незначителен. При большем количестве вводимых дисперсных частиц сплав существенно охрупчивается.

Пример 1

Выплавка сплава осуществляется с помощью высококачественной установки типа УИП16-10-003 в алундовых тиглях N4. Последовательность введения компонентов следующая: (Co+Cr+Si)→Zr→Al→Re→(Ce-La-Y)→(TiB2+BN). Состав сплава (масс.%): Cr - 17,4; Si - 2,6; Re - 3,0; Zr - 4,0; Ce - 0,2; La - 0,1; Y - 0,3; Al - 2,0; TiB2 - 10,0; BN - 10,0; Co - остальное.

После получения слитка производилось его дробление до фракции 5-7 мм с помощью щековой дробилки типа ДЩ-4. Оптимальной фракцией для получения покрытий методом гетерофазного переноса с помощью установки микроплазменного напыления типа УГНП-3/3350 является фракция исходного материала 50-80 мкм. Дробление до указанной фракции производилось на дезентиграторной установке типа Дези-1А при скоростях вращения роторов 7200 об/мин. Из полученного порошка с помощью метода микроплазменного напыления на подложку пластины из стали Х18Н10Т толщиной 5 мм было нанесено функциональное покрытие толщиной 150±20 мкм.

Микротвердость покрытия, измеренная на установке Nanoscan, составила 4,2 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C - 3,6 и 4,0 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 35 МПа.

Пример 2

Выплавка сплава производилась так же как в примере 1. Состав сплава (масс.%): Cr - 21,1; Si - 4,9; Re - 5,0; Zr - 6,0; Ce - 0,6; La - 0,5; Y - 0,3; Al - 2,0; TiB2 - 12,5; BN - 12,5; Co - остальное.

После получения слитка производилось дробление слитка до фракции 40-60 мкм на дезинтеграторе типа Дези-15 при скоростях вращения роторов 12000 об/мин.

Из полученного порошка с помощью метода сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3 на подложку пластины из стали Х15Ю5 шириной 100 мм и толщиной 3 мм было нанесено функциональное покрытие толщиной 100±10 мкм.

Микротвердость покрытия, измеренная, как в примере 1, составляет 4,6 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C 3,0 и 4,2 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 32 МПа.

Источники информации

1. RU 2352663, МПК C22C 19/07, опубликовано 20.04.2009.

2. RU 2333990, МПК С22С 19/07, С22С 30/00, опубликовано 20.09.2008.

3. RU 2273680, МПК С22С 19/07, опубликовано 10.04.2006 - прототип.

4. Горынин И.В., Бурханов Г.С., Фармаковский Б.В. Перспективы разработок конструкционных материалов на основе тугоплавких металлов и соединений. // Вопросы материаловедения. - 2012. - СПб. №2. - 5 с.

Источник поступления информации: Роспатент

Showing 41-50 of 265 items.
20.08.2013
№216.012.60a4

Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его...
Тип: Изобретение
Номер охранного документа: 0002490372
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.6702

Способ изготовления крепежных элементов из высокопрочных титановых сплавов

Изобретение относится к области металлургии и может быть использовано в авиационно-космической технике, в химическом машиностроении, судостроении, автомобильной промышленности при изготовлении стержневых деталей с головками из титановых сплавов. После горячей высадки на заготовке головки болта,...
Тип: Изобретение
Номер охранного документа: 0002492017
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6860

Способ ламинаризации пограничного слоя на аэродинамической поверхности

Изобретение относится к способам управления пограничным слоем на поверхности летательного аппарата. Способ ламинаризации пограничного слоя на аэродинамической поверхности заключается в том, что с помощью диэлектрического барьерного разряда ионизируют поток воздуха и воздействуют на него...
Тип: Изобретение
Номер охранного документа: 0002492367
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.7433

Способ спектрофотометрического определения концентрации диоксида хлора и хлорит-иона в питьевой воде

Изобретение относится к аналитической химии, в частности к способам определения концентрации примесей в питьевой воде. Способ включает обработку проб воды раствором йодида калия, поочередное измерение оптической плотности проб диоксида хлора при pH 7 и хлорит-иона и диоксида хлора при pH 2,5,...
Тип: Изобретение
Номер охранного документа: 0002495404
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.74a9

Буферный усилитель

Изобретение относится к технике передачи измерительных сигналов, характеризующихся величиной электрического напряжения, в частности к буферным усилителям. Техническим результатом является повышение быстродействия передачи напряжения на расстояние за счет уменьшения времени переходных процессов...
Тип: Изобретение
Номер охранного документа: 0002495522
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.757e

Гибкая автоматизированная система базирования

Изобретение относится к приспособлениям для крепления-зажима деталей, более конкретно к способам и устройствам для базирования сложнопрофильных нежестких деталей на многокоординатных станках, которое может быть использовано в авиакосмической и других отраслях промышленности. Технический...
Тип: Изобретение
Номер охранного документа: 0002495738
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7b84

Способ оценки электромагнитной совместимости бортового оборудования в составе летательного аппарата в диапазоне частот от 10 кгц до 400 мгц

Изобретение относится к области испытаний электромагнитной совместимости (ЭМС) бортового радиоэлектронного и электронного оборудования в составе летательных аппаратов (ЛА) и может быть использовано при проведении испытаний по оценке влияния на испытываемое бортовое оборудование (БО) радиопомех...
Тип: Изобретение
Номер охранного документа: 0002497282
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7cdc

Режущий инструмент

Изобретение относится к машиностроению и может быть использовано в режущих инструментах с механическим креплением режущих пластин. Инструмент содержит корпус, в гнезде которого установлена режущая пластина, закрепляемая с помощью Г-образного прихвата с цилиндрической направляющей частью,...
Тип: Изобретение
Номер охранного документа: 0002497637
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ebd

Прецизионный комплектный цифровой линейный гидропривод

Изобретение относится к области машиностроения, в частности к программируемым гидроприводам механообрабатывающего оборудования с числовым программным управлением. Гидропривод содержит одноштоковый силовой гидроцилиндр с позиционным датчиком обратной связи, гидрораспределитель с пропорциональным...
Тип: Изобретение
Номер охранного документа: 0002498118
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.825b

Рекомбинантная плазмида, рекомбинантный штамм, рекомбинантный белок вмр-7 и способ выделения рекомбинантного белка в димерной форме

Изобретение относится к биотехнологии и представляет собой рекомбинантную плазмиду BMPRIB-CBD, штамм E.coli, трансформированный данной плазмидой. Изобретение относится также к рекомбинантному белку BMPRIB-CBD, с использованием которого получают белок BMP-7. Изобретение позволяет получить...
Тип: Изобретение
Номер охранного документа: 0002499047
Дата охранного документа: 20.11.2013
Showing 41-50 of 217 items.
10.07.2013
№216.012.544b

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. В способе используют по меньшей мере две затравки, которые выполняют в виде цилиндра или параллелепипеда, изолируют от корпуса кристаллизатора и размещают...
Тип: Изобретение
Номер охранного документа: 0002487182
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5538

Система комплексной обработки информации радионавигационных и автономных средств навигации для определения действительных значений параметров самолетовождения

Изобретение относится к системам навигации летательных аппаратов (ЛА), а именно к обработке информации в навигационно-пилотажных комплексах. На борту ЛА расположены: инерциальная навигационная система (ИНС), радионавигационный корректор - спутниковая навигационная система (СНС) и автономный...
Тип: Изобретение
Номер охранного документа: 0002487419
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.574f

Двухслойный стальной прокат

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных конструкций из двухслойного проката, длительно эксплуатирующихся при отрицательных температурах в условиях интенсивного механического, коррозионно-эрозионного воздействия мощных ледовых полей и...
Тип: Изобретение
Номер охранного документа: 0002487959
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59a0

Сырьевая смесь для изготовления огнестойкого конструкционного материала

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, атомной промышленности для защиты от пожара служебных и жилых помещений в составе огнестойких конструкций, а также в качестве среднего слоя панелей, облицованных декоративно-отделочными...
Тип: Изобретение
Номер охранного документа: 0002488565
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5c89

Движительно-рулевая колонка

Изобретение относится к судостроению и может быть использовано при создании судовых движительно-рулевых комплексов. Движительно-рулевая колонка содержит баллер, гондолу, гребной винт и механизм поворота колонки. Баллер в верхней части соединен с корпусом через опорный шар, а в нижней части -...
Тип: Изобретение
Номер охранного документа: 0002489310
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f87

Способ изготовления крепежных элементов из высокопрочных титановых сплавов

Изобретение относится к области металлургии и может быть использовано при изготовлении стержневых деталей с головками из титановых сплавов. Заготовки подвергают термообработке, после чего производят горячую высадку головок крепежных элементов. После механообработки заготовок с головками...
Тип: Изобретение
Номер охранного документа: 0002490087
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.60a4

Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его...
Тип: Изобретение
Номер охранного документа: 0002490372
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.6702

Способ изготовления крепежных элементов из высокопрочных титановых сплавов

Изобретение относится к области металлургии и может быть использовано в авиационно-космической технике, в химическом машиностроении, судостроении, автомобильной промышленности при изготовлении стержневых деталей с головками из титановых сплавов. После горячей высадки на заготовке головки болта,...
Тип: Изобретение
Номер охранного документа: 0002492017
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6860

Способ ламинаризации пограничного слоя на аэродинамической поверхности

Изобретение относится к способам управления пограничным слоем на поверхности летательного аппарата. Способ ламинаризации пограничного слоя на аэродинамической поверхности заключается в том, что с помощью диэлектрического барьерного разряда ионизируют поток воздуха и воздействуют на него...
Тип: Изобретение
Номер охранного документа: 0002492367
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.7433

Способ спектрофотометрического определения концентрации диоксида хлора и хлорит-иона в питьевой воде

Изобретение относится к аналитической химии, в частности к способам определения концентрации примесей в питьевой воде. Способ включает обработку проб воды раствором йодида калия, поочередное измерение оптической плотности проб диоксида хлора при pH 7 и хлорит-иона и диоксида хлора при pH 2,5,...
Тип: Изобретение
Номер охранного документа: 0002495404
Дата охранного документа: 10.10.2013
+ добавить свой РИД