×
20.01.2015
216.013.1f7c

Результат интеллектуальной деятельности: УПРАВЛЕНИЕ КОНВЕРТЕРНЫМ ПРОЦЕССОМ ПОСРЕДСТВОМ СИГНАЛОВ ОТХОДЯЩЕГО ГАЗА

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002539501
Дата охранного документа
20.01.2015
Аннотация: Изобретение относится к области металлургии, в частности к способу динамического управления в конвертере процессом продувки при производстве стали, включающему анализ отходящего газа с помощью модели процесса со статическим обсчетом процесса и с помощью независимой от этой модели процесса подмодели с динамическим наблюдением за процессом на основании анализа отходящего газа конвертера. С помощью независимой от модели процесса подмодели, которая, основываясь на анализе отходящего газа, работает как наблюдатель за процессом, посредством рациональной комбинации полученных сигналов компонентов вычисляют наблюдаемые значения для критического момента времени (t') обезуглероживания и для конца продувки О (t'), посредством которых предварительно вычисленное по модели процесса содержание кислорода к началу процесса корректируют и согласуют с фактическими условиями к концу интервала времени обезуглероживания. Использование изобретения обеспечивает повышение качества производимой стали. 4 з.п. ф-лы, 2 ил.

Изобретение относится к способу динамического управления конвертерным процессом, в частности при продувке кислорода при производстве стали, посредством анализа отходящего газа.

Современные процессы производства стали требуют точного знания текущего состава и температуры обрабатываемого жидкого металла. В частности, при производстве стали в конвертере требуются высокие уровни точности по конечному содержанию углерода и температуре ванны. Количественно точная продувка кислорода, соответствующая конечному целевому содержанию углерода, а также температура металла являются решающими факторами, влияющими на экономическую эффективность процесса, а также на качество производимой стали.

Чтобы обеспечить возможность относительно точного отслеживания процесса, известны различные процедуры и процессы, которые в своем применении большей частью основаны на измерении состава отходящего газа и на массовых балансах. Все модели работают с точностью, зависимой от точности вводимых данных, особенно по отношению к данным о весе используемых материалов и химических свойствах используемого металла.

Из DE 2839316 А1 известен способ управления процессом производства стали, при котором происходит обезуглероживание расплавленной стали при атмосферном давлении и с образованием отходящего газа, который содержит СО, СО2 и N2, характеризуемый следующими этапами: формирование однородной газовой смеси из отходящего газа и измеренного количества эталонного газа, который является инертным относительно отходящего газа, масс-спектрометрический контроль пробы однородной смеси на ионизационные токи для выбранных пиков, относящихся к СО, СО2, N2 и эталонному газу в пробе, определение доли или величины обезуглероживания расплавленной стали к времени наблюдения из измеренного значения количества эталонного газа в смеси и измеренных значений ионизационных токов для выбранных пиков и управление процессом производства стали соответственно измеренному значению доли или величины обезуглероживания расплавленной стали.

В WO 2008/049673 А1 описан способ регулирования удаления СО при производстве стали, при котором к расплаву для удаления содержащегося углерода (С) подают кислород (О2), определяют фактическое значение выделяемого из расплава потока углерода, вычисляют из поданного количества кислорода и содержания углерода в расплаве с учетом возможных иных реакций заданное значение выделяемого потока углерода, сравнивают заданное и фактическое значения друг с другом и в случае отставания фактического значения от заданного значения предпринимают меры по устранению внезапного нарастания газовых пузырьков. В качестве подходящих мер указаны следующие:

- управление подачей кислорода к расплаву и, при необходимости, снижение подачи кислорода,

- подача углерода к расплаву.

Известный из WO 2009/030192 А1 способ косвенного определения доли отходящего газа при металлургических процессах характеризуется тем, что к отходящему газу сначала добавляют эталонный газ, такой как гелий, а именно, в момент времени, который по потоку настолько опережает отбор пробы, что происходит основательное перемешивание эталонного газа и отходящего газа, то есть достигается почти однородное распределение, и что затем осуществляют количественный анализ гелия и азота в отходящем газе, измеряемом масс-спектрометром с учетом добавленного количества гелия, при следующих отдельных определениях: О2, СО, СО2, N2, Ar, He, H2.

Как изложено, в том числе, в публикации “Stahl u Eisen 113 (1993) Nr.6, Seite 56”, в LD-конвертере уже более 20 лет начали использовать содержащуюся в отходящем газе информацию о процессе обезуглероживания. Для управления процессом в способах кислородного дутья до 1980 г. для 9 из 17 упомянутых в обзоре конвертерных сталелитейных предприятий приведено измерение отходящего газа, и отмечена высокая точность от 85% до 95% для интервала содержания углерода ±0,020%. Это соответствует стандартному отклонению погрешности примерно от 0,014% до 0,010%. Между тем, измерение отходящего газа, как излагается далее, частично масс-спектрометром, частично отдельными приборами, стало постоянной составной частью большинства систем управления процессом для LD-конвертеров и выводимых отсюда способов кислородного дутья. В дополнение к так называемой “статической модели” для предварительного обсчета процесса, измерение отходящего газа вместе со вспомогательной фурмой в так называемой “динамической модели” обеспечивает возможность непрерывного наблюдения за и управления процессом. Убывающая перед концом обработки скорость обезуглероживания указывает, когда необходимо выполнить измерение для вспомогательной фурмы, чтобы с этим определением положения надежно установить не только содержание углерода, но и температуру. Основывающийся на кислородном балансе расчет зашлаковывания железа, марганца, фосфора и серы может определить состав ванны настолько точно, что большинство расплавов могут выпускаться и легироваться непосредственно, без взятия контрольной пробы и ожидания ее анализа.

Исходя из этого описанного уровня техники, задача изобретения состоит в том, чтобы создать способ, который посредством анализа отходящего газа обеспечивает возможность независимого от заданной модели процесса динамического управления конвертерным процессом производства стали, в частности, при продувке кислорода.

Поставленная задача решается с помощью отличительных признаков пункта 1 формулы изобретения тем, что с помощью независимой от модели процесса подмодели, которая, основываясь на анализе отходящего газа, работает как наблюдатель за процессом, посредством рациональной комбинации полученных сигналов компонентов вычисляют наблюдаемые значения для критического момента времени (t'crit) обезуглероживания и для конца дутья О2 (t'EoB), посредством которых предварительно вычисленное по модели процесса содержание кислорода к началу процесса корректируют и согласуют с фактическими условиями к концу интервала времени обезуглероживания, причем критический момент времени (t'crit) обезуглероживания вычисляют как:

t=t'crit, если CP(t)≥CPP и CP(t)=(N2)^n/(CO)^m,

где

CCP = параметр граничного значения,

CP=(N2)^n/(CO)^m для конвертера с зазором и низкого дожигания СО,

CP=(N2/CO2)^s для конвертера без зазора и высокого дожигания СО,

и конец продувки О2 (t'EoB) вычисляют как:

t=t'EoB, если ЕоВ(t)≥ЕоВР1 и ЕоВ=(СО+СО2)-r PC,

где

РС=СО2/(СО+СО2)100 = дожигание в %

при

СО: содержание монооксида углерода в отходящем газе в %,

СО2: содержание диоксида углерода в отходящем газе в %

и

ЕоВР1 = параметр граничного значения,

r = параметр согласования.

Конец продувки соответствует тому моменту времени, в который градиент функции “EoB” превышает определенное значение. Постоянная “r” функции усиливает сигнал и повышает чувствительность сигнала. Физическое толкование этого усиленного сигнала означает конец дожигания СО в емкости конвертера.

Параметры в уравнениях для критического момента времени обезуглероживания и для конца продувки О2 зависят от конструкции конвертера и, в частности, от доступности регулировки зазора и должны настраиваться с регулярными интервалами. Предполагаемые диапазоны настройки следующие:

n=6-7,

m=3-6,

s=3-4,

r=0-5.

Критический момент времени обезуглероживания соответствует тому моменту времени, в который градиент функции “СР” превышает определенное значение, то есть кинетика обезуглероживания переходит из состояния дефицита кислорода для окисления углерода в состояние избытка кислорода. Физическая интерпретация этого усиленного сигнала означает начало сниженного обезуглероживания, выражаемого непрерывным нарастанием содержания азота и снижением содержания монооксида углерода в отходящем газе. Состояние перед этим моментом времени характеризует квази-постоянную скорость обезуглероживания основной фазы обезуглероживания и прямо пропорционально количеству вдуваемого кислорода. После критического момента времени обезуглероживания скорость обезуглероживания контролируется потенциалом реакции, который выражается через разность между текущим содержанием углерода и его термодинамическим равновесием. При этом данная скорость обезуглероживания проявляет экспоненциальный тренд. Спадающая скорость обезуглероживания приводит, в зависимости от разности между текущим содержанием углерода и его термодинамическим равновесием, к пониженному потенциалу реакции. Речь идет о функции текущего химического состава металла и его температуры. Экспоненты функции усиливают сигнал и повышают чувствительность сигнала при всех изменениях сигнала.

При этом градиент функции “CP” для конвертера с зазором и пониженного дожигания СО:

CP=(N2)^n/(CO)^m

при

N2 = содержание азота в % в отходящем газе.

При отсутствии этих данных N2 можно вычислить как

N2=100 - О2-СО-СО2,

и для конвертера без зазора и высокого дожигания СО:

CP=(N2/СО2)^s.

Посредством поддерживающего вычисления в зависимости от различных уровней сигнала анализ отходящего газа обеспечивает возможность определения содержания захваченного углерода в ванне металла, при котором посредством кислородного дутья достижимо определенное, желательное конечное содержание углерода. За счет комбинации критического момента времени обезуглероживания с концом продувки О2 получают, к тому же, определение временного интервала, который сопоставлен содержанию углерода в ванне металла после критического момента времени обезуглероживания.

Способу сопоставлена нижеследующая последовательность операций:

Если t=t'crit

t: t'crit+Δt→Cf(t'crit+Δt)

t: t'crit+2Δt→Cf(t'crit+2Δt)

.

.

.

t: t'crit+nΔt→Cf(t'crit+nΔt),

где

Δt=(tf-t'crit)/n = статистически оцениваемый временной интервал.

Наконец, посредством поддерживающего вычисления остаточного времени обезуглероживания, основываясь на критическом содержании углерода, проводят оценку подлежащего продувке остаточного кислорода.

Применяемая для способа по изобретению система измерения должна основываться на по меньшей мере трех основных компонентах отходящего газа: кислороде, монооксиде углерода и диоксиде углерода, причем доли азота и остаточного газа дополняют газовый баланс. При обычном измерении азот вычисляется как остаток до 100%; водородом и другими компонентами пренебрегают. При использовании масс-спектрометра все существенные компоненты отходящего газа предоставляются в распоряжение непосредственно из измерения. Эмпирические величины, которые в аналитических функциях выражаются как специальная комбинация компонентов, отслеживают как определенный фактор поведение различных трендов, которые значимы для определения критического момента времени обезуглероживания и конца продувки.

Грубо измеренные значения количества и состава отходящего газа, которые воспринимаются соответствующими приборами применяемой системы измерения, перед их применением в вычислениях баланса следует частично обработать (подготовить), чтобы таким образом сгладить колебания сигнала, обеспечить к соответствующему моменту времени корректное соотношение различных точек данных и применить некоторые количественные корректирующие параметры.

В случае сглаживания колебаний сигнала речь идет об обычном математическом методе, который применяется при нескольких множествах. Для полноты отношений параметров сглаживание приводится в последующих формулах. Для краткости обозначения вводится посредством определения выражения оператор сглаживания X=smooth(X,τ) в следующем виде:

,

где

u(k) = нефильтрованная последовательность измеренных значений сигнала во времени t с временными интервалами Δt, в типовом случае последовательность из измеренных значений,

x(k+1) = соответствующий сглаженный сигнал,

τ = средний параметр временного интервала, который определяет степень сглаживания.

В случае двойного сглаживания, при котором процесс сглаживания осуществляется дважды, обозначение имеет вид: X=glatt2(X,τ).

Система измерения отходящего газа обычно выдает сигналы с временем дискретизации 0,3-0,5 секунды. Эти сигналы служат для формирования различных специальных сигналов поддержки и регулирования. С целью их сглаживания можно использовать следующий способ фильтрации:

x(k+1)=ax(k)+(1-a)u(k), причем k=0, 1, 2, …,

где

x(k) = сглаженный сигнал “x” к моменту времени k,

x(k+1) = сглаженный сигнал “x” к моменту времени k+1,

u(k) = измеренный сигнал “x” к моменту времени k,

и с параметрами

a=N/(N+1) a∈[0,1]

1-a=1/(N+1),

где

N = число считанных во время процесса сглаживания значений сигнала.

Вследствие лежащей в диапазоне 15-20 секунд задержки регистрируемых с интервалом в одну секунду при времени дискретизации 0,3-0,5 секунды значений отходящего газа, эти значения для определения критического момента времени обезуглероживания и для момента времени конца продувки и их разности должны статистически оцениваться.

Способ по изобретению характеризуется следующим взаимно проникающим производственным процессом:

А) Модель процесса со статическим обсчетом процесса и определением:

- количества О2, модели продувки, типа продуваемого газа, модели продуваемого газа, расстояния до фурмы,

- добавки шлакообразователей,

- добавки охлаждающих веществ.

В) Независимая от модели процесса подмодель с динамическим наблюдением за процессом

- модели отходящего газа (РС, СР, ЕоВ),

- СР = критический момент времени обезуглероживания,

- ЕоВ = конечный момент времени продувки.

Далее на примерах реализации представлены структура системы измерения отходящего газа (фигура 1) и общий обзор соответствующего изобретению контура регулирования конвертера (фигура 2).

Фигура 1 показывает на технологической диаграмме обычную систему 10 измерения с последовательно подключенными приборами 7 анализа - существует также возможность параллельного подключения - для определения СО, СО2 и О2. Из отходящего из конвертера 1 газа (фиг.2) перед диафрагмой или соплом Вентури 3 в трубопроводе 2 отходящего газа посредством всасывающего насоса 5 отбирают пробу 4 отходящего газа примерно 0,5 литра и подают в блок 6 подготовки отходящего газа. Оттуда проба 4 отходящего газа подается в подключенные последовательно друг за другом приборы 7 анализа, где с временем срабатывания примерно 0,5 секунды формируется соответствующий анализируемому значению сигнал.

На фигуре 2 схематично представлен соответствующий изобретению контур регулирования конвертера 1. Контур регулирования состоит из участков соответствующих изобретению наблюдения за и управления 20 процессом (на чертеже справа) с системой 10 измерения, блоком 11 подготовки сигнала, подмоделью в качестве наблюдателя 12 за процессом и блока 13 контроля процесса, а также обычного хода 30 процесса (на чертеже слева) с конвертером 1 и управлением или обслуживанием 15 процесса.

Пробы 4 отходящего из конвертера 1 газа анализируют в системе 10 измерения (см. фиг.1) и полученные сигналы, соответствующие анализируемым значениям, обрабатывают (подготавливают) в блоке 11 подготовки сигналов таким образом, что вслед за этим от подмодели 12 корректирующие первоначальную модель процесса данные поступают в блок 13 контроля за или управления процессом для управления или обслуживания 15 процесса.

Перечень ссылочных позиций

1 Конвертер

2 Трубопровод отходящего газа от конвертера

3 Диафрагма или сопло Вентури

4 Проба отходящего газа

5 Всасывающий насос

6 Подготовка отходящего газа

7 Приборы анализа

10 Система измерения

11 Подготовка сигнала

12 Подмодель в качестве наблюдателя за процессом

13 Контроль процесса

15 Управление процессом

20 Наблюдение за и управление процессом

30 Ход процесса.


УПРАВЛЕНИЕ КОНВЕРТЕРНЫМ ПРОЦЕССОМ ПОСРЕДСТВОМ СИГНАЛОВ ОТХОДЯЩЕГО ГАЗА
УПРАВЛЕНИЕ КОНВЕРТЕРНЫМ ПРОЦЕССОМ ПОСРЕДСТВОМ СИГНАЛОВ ОТХОДЯЩЕГО ГАЗА
Источник поступления информации: Роспатент

Showing 71-80 of 87 items.
13.01.2017
№217.015.7d7b

Устройство для охлаждения валков

Изобретение относится к области прокатки. Устройство (1) для охлаждения прокатного валка (2), в частности рабочего валка (2), содержит лежащую противоположно по меньшей мере частичной зоне окружности поверхности валка охлаждающую оболочку (50) для образования предназначенного для прохождения...
Тип: Изобретение
Номер охранного документа: 0002600768
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7ded

Способ и установка для изготовления металлической полосы

Изобретение может быть использовано при прокатке металлической полосы на литейно-прокатной установке. Способ осуществляют на установке непрерывной разливки и следующих за ней в направлении подачи сляба первой печи с неохлаждаемыми роликами пода, второй печи и чистовом прокатном стане. На стадии...
Тип: Изобретение
Номер охранного документа: 0002600772
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f34

Устройство для охлаждения валков

Изобретение относится к области прокатки. Устройство (1, 1′) для охлаждения валка (2), в частности рабочего валка (2) для прокатки прокатываемого материала (3), включает расположенную напротив по меньшей мере частичной области периметра поверхности валка, охлаждающую оболочку (50, 60) для...
Тип: Изобретение
Номер охранного документа: 0002601034
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.86fe

Опорный узел прокатного валка

Изобретение относится к опорным узлам (100) валков для использования в металлургии. Узел содержит валок с бочкой (11) валка и двумя цапфами (10) валка и по меньшей мере одну цапфенную втулку (20) для установки без возможности вращения по меньшей мере одной из цапф (10) валка. Между цапфой...
Тип: Изобретение
Номер охранного документа: 0002603403
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8dcd

Способ для извлечения металла из содержащего металл шлака, а также устройство для извлечения металла

Данное изобретение относится к способу для извлечения металла из содержащего металл шлака, во время которого содержащий металл шлак нагревается в по меньшей мере одном реакторе с перемешиванием и во время которого жидкий шлак периодически перемешивается в реакторе с перемешиванием при помощи...
Тип: Изобретение
Номер охранного документа: 0002605028
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.96e8

Способ очистки и/или удаления окалины с плоской заготовки или черновой полосы с помощью устройства для гидросбива окалины и устройство для гидросбива окалины

Изобретение относится к области прокатки. Способ гидросбива окалины с поверхности плоской заготовки или черновой полосы (1) производят посредством устройства (2) для гидросбива окалины, которое имеет по меньшей мере одну форсунку (3) с выходным каналом, направленным к поверхности плоской...
Тип: Изобретение
Номер охранного документа: 0002608939
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.96f5

Способ и устройство для динамического снабжения охлаждающим средством охлаждающего устройства для охлаждения металлической полосы или подобного прокатываемого изделия

Изобретение относится к области горячей прокатки. Способ охлаждения прокатываемой металлической полосы посредством охлаждающего устройства (1, 1') с по меньшей мере одним форсуночным коллектором (1, 1') включает регулирование направления потока охлаждающего средства. Предотвращение...
Тип: Изобретение
Номер охранного документа: 0002608921
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.acdc

Способ и устройство для охлаждения поверхностей в разливочных агрегатах, прокатных агрегатах или других линиях обработки полосы

Изобретение относится к области прокатки. Способ охлаждения поверхности проката включает использование форсунки, имеющей впуск (3) и расположенный напротив охлаждаемой поверхности выпуск (5), при этом создают однофазный объемный поток (V) охлаждающей текучей среды, который через впуск (3)...
Тип: Изобретение
Номер охранного документа: 0002612467
Дата охранного документа: 09.03.2017
20.02.2019
№219.016.c435

Система барабанных ножниц

Изобретение относится к системам барабанных ножниц. Барабанные ножницы содержат два расположенных на одной раме (2) и приводимых во вращательное движение барабана. Каждый из барабанов по своему контуру снабжен ножом. При прохождении металлического листа в зазор между барабанами по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002466833
Дата охранного документа: 20.11.2012
01.03.2019
№219.016.ce19

Устройство для прокатки, в частности клеть для асимметричной прокатки

Изобретение предназначено для улучшения качества проката и уменьшения нагрузок на оборудование. Устройство (50) для прокатки имеет станину и два комплекта валков, по меньшей мере, с двумя валками (52, 53, 54, 55), установленные в станине (51), причем прокатываемый материал (56) для прокатки...
Тип: Изобретение
Номер охранного документа: 0002414976
Дата охранного документа: 27.03.2011
Showing 71-80 of 82 items.
10.06.2016
№216.015.48da

Способ и устройство для охлаждения валков

Изобретение относится к области металлургии, в частности к способу охлаждения рабочего валка прокатного стана горячей прокатки. Способ включает этап подачи охладителя посредством по меньшей мере одного сопла в зазор между по меньшей мере частью поверхности валка и охлаждающей оболочкой,...
Тип: Изобретение
Номер охранного документа: 0002586375
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.6292

Устройство обнаружения для металлических полос или листов

Изобретение относится к устройству (1) для обнаружения наличия прокатываемого или литейного материалов (2) в литейной, прокатной или другой установке по обработке полосы. Технический результат - повышение точности обнаружения. Устройство содержит средства (13) для создания направленной струи...
Тип: Изобретение
Номер охранного документа: 0002588939
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.65b9

Опорный ролик

Изобретение относится к области обработки металлических полосы, листа или профиля. Опорный ролик (1, 10) для прокатных станов или устройств для разливки, транспортировки или правки металлических продуктов содержит цилиндрическую ось (2, 20), расположенное концентрично оси (2, 20) наружное...
Тип: Изобретение
Номер охранного документа: 0002592336
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a93

Способ для открытия и закрытия выпускного отверстия металлургической плавильной емкости

Изобретение относится к металлургии и может быть использовано для открытия и закрытия выпускного отверстия металлургической плавильной емкости. В электродуговой печи, в донной области которой расположен участок стенки с отверстием, причем под отверстием расположено устройство для...
Тип: Изобретение
Номер охранного документа: 0002593042
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7d7b

Устройство для охлаждения валков

Изобретение относится к области прокатки. Устройство (1) для охлаждения прокатного валка (2), в частности рабочего валка (2), содержит лежащую противоположно по меньшей мере частичной зоне окружности поверхности валка охлаждающую оболочку (50) для образования предназначенного для прохождения...
Тип: Изобретение
Номер охранного документа: 0002600768
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7ded

Способ и установка для изготовления металлической полосы

Изобретение может быть использовано при прокатке металлической полосы на литейно-прокатной установке. Способ осуществляют на установке непрерывной разливки и следующих за ней в направлении подачи сляба первой печи с неохлаждаемыми роликами пода, второй печи и чистовом прокатном стане. На стадии...
Тип: Изобретение
Номер охранного документа: 0002600772
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f34

Устройство для охлаждения валков

Изобретение относится к области прокатки. Устройство (1, 1′) для охлаждения валка (2), в частности рабочего валка (2) для прокатки прокатываемого материала (3), включает расположенную напротив по меньшей мере частичной области периметра поверхности валка, охлаждающую оболочку (50, 60) для...
Тип: Изобретение
Номер охранного документа: 0002601034
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.86fe

Опорный узел прокатного валка

Изобретение относится к опорным узлам (100) валков для использования в металлургии. Узел содержит валок с бочкой (11) валка и двумя цапфами (10) валка и по меньшей мере одну цапфенную втулку (20) для установки без возможности вращения по меньшей мере одной из цапф (10) валка. Между цапфой...
Тип: Изобретение
Номер охранного документа: 0002603403
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8dcd

Способ для извлечения металла из содержащего металл шлака, а также устройство для извлечения металла

Данное изобретение относится к способу для извлечения металла из содержащего металл шлака, во время которого содержащий металл шлак нагревается в по меньшей мере одном реакторе с перемешиванием и во время которого жидкий шлак периодически перемешивается в реакторе с перемешиванием при помощи...
Тип: Изобретение
Номер охранного документа: 0002605028
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.96e8

Способ очистки и/или удаления окалины с плоской заготовки или черновой полосы с помощью устройства для гидросбива окалины и устройство для гидросбива окалины

Изобретение относится к области прокатки. Способ гидросбива окалины с поверхности плоской заготовки или черновой полосы (1) производят посредством устройства (2) для гидросбива окалины, которое имеет по меньшей мере одну форсунку (3) с выходным каналом, направленным к поверхности плоской...
Тип: Изобретение
Номер охранного документа: 0002608939
Дата охранного документа: 26.01.2017
+ добавить свой РИД