×
10.01.2015
216.013.1df8

Результат интеллектуальной деятельности: БИОГАЗОВАЯ УСТАНОВКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области переработки и утилизации органических отходов путем сбраживания биомассы для получения биогаза и удобрения, в том числе в зонах с холодным климатом. Биогазовая установка содержит теплоизолированный метантенк, состоящий из экструдера-смесителя, электрических мешалок биомассы, насосов, камер гидролизного, кислотного и метанового брожения, каждая из которых имеет теплообменник. К выходу метантенка, к камере метанового брожения, подключен газгольдер и сепаратор сброженной массы. Биогазовая установка снабжена блоком источников возобновляемой и другой избыточной в данный момент энергии в сетях. Блок источников возобновляемой и другой избыточной энергии включает имеющий теплообменники, ТЭНы и генератор тепловой аккумулятор, соединенный с источниками возобновляемой энергии и электрической сетью. При этом вход теплоаккумулятора для подпиточной воды подключен к магистрали, а выходы горячей воды теплоаккумулятора соединены с экструдером-смесителем и камерами брожения. ТЭН теплоаккумулятора посредством переключателей электрической энергии соединен с электрическими мешалками, насосами и с экструдером-смесителем либо с генератором с возможностью работы последнего от источников возобновляемой энергии либо в случае их отсутствия - от сети во временной период действия низких тарифов за оплату электроэнергии. Изобретение обеспечивает увеличение выработки биогаза за счет обеспечения оптимальных режимов непрерывного сбраживания биомассы в зонах холодного климата с увеличенным отопительным периодом. 3 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к биоэнергетике и предназначено для увеличения эффективности работы бродильных агрегатов в составе метантенков и биогазовых установок (БГУ).

Существующие БГУ затрачивают значительную часть вырабатываемого ими биогаза для поддержания нужного температурного режима субстрата путем сжигания биогаза в водогрейных котлах [1]. Часто используется для этих целей внешняя тепловая или электрическая энергия, в том числе от некоторых возобновляемых источников.

Известен «Биоэнергокомплекс» по авторскому свидетельству СССР №1527191 для анаэробного сбраживания биомассы с использованием энергии солнца [2] (аналог).

Биоэнергокомплекс содержит резервуар-реактор, коллектор солнечной энергии, теплообменники, насос, причем коллектор выполнен в виде горячего ящика с селективным остеклением и расположен с наклоном, а теплообменники сообщены через насос принудительной циркуляции.

Недостатком данного устройства является отсутствие возможности поддерживать необходимую температуру в реакторе в ночное время, в зимний период, а также при наличии сильной облачности, когда величина солнечной инсоляции незначительна.

Известна также «Биогазовая установка» (аналог) по патенту №2065408 РФ, использующая энергию солнца и ветра [3].

Данная установка содержит реактор, разделенный перегородкой на две сообщающиеся камеры, загрузочный люк для биомассы и люк выгрузки сброженной массы, а также - теплообменник от солнечной нагревательной установки и устройства перемешивания в виде двух рядов лопаток, соединенные с ветродвигателем, причем теплообменник вмонтирован в вертикальную перегородку.

Недостатком данного устройства является также отсутствие возможности точно поддерживать температуру сбраживания биомассы в любой временной период.

В книге «Обработка сточных вод и осадков в метантенках» [4] на с.14 указывается: «… с момента установления температуры бактериальные культуры адаптируются к ней; изменение ее на 3-4°C могут привести к торможению метанового и возобновлению кислого брожения…». Солнечный коллектор не способен стабильно поддерживать необходимую температуру в реакторе при отсутствии или слабой солнечной инсоляции.

Другим недостатком этого устройства является использование ветродвигателя непосредственно для перемешивания биомассы в реакторе. В книге «Системы ферментации» [5] на с.21 разъясняется: «… таким образом, основной задачей перемешивания является предотвращение оседания материала, разрушение верхней корки, десорбция биогаза и обеспечение гомогенности культуральной жидкости по физико-химическим параметрам…».

Энергия ветра не является стабильной величиной. На территории РФ ветровые потоки в летнее время имеют диапазоны 0,5…2 м/с, что недостаточно для работы ветроэнергетических установок. Требуемый режим перемешивания биомассы через каждые 2…3 часа по несколько минут от ветродвигателей не будет обеспечен, что приведет к образованию в реакторе корки на поверхности жидкости и осадка на дне реактора. Известен также «Ферментатор-газгольдер» [6] по авторскому свидетельству №1583367 СССР, в котором частично решается задача сокращения тепловых потерь.

Ферментатор-газгольдер содержит корпус с двойными стенками, между которыми размещен теплоноситель (парафин) с фазовым переходом, теплообменник ввиде трубчатого замкнутого змеевика с горизонтальным верхним участком, заполненным другим теплоносителем (металлическим натрием), при этом верхний участок теплообменника снабжен расположенным коаксиально вокруг него прозрачным вакуумным патрубком и установленной над ним линзой с линейным фокусом и подвижными кронштейнами. Ферментатор-газгольдер содержит также заправочный и сливной патрубки с вентилями, штуцер для выпуска биогаза и плоскую спиральную мембрану для периодического перемешивания биомассы путем ее встряхивания при сбросе давления биогаза.

Недостатком данного устройства является также невозможность длительное время поддерживать стабильную температуру сбраживаемой биомассы. Из описания авторского свидетельства №1583367 следует, что температура участка змеевика с металлическим натрием может разогреваться от солнца оптической системой до 530°C. Это следствие перегрева жидкого парафина, размещенного между двойными стенками корпуса, и соответственно перегрев сбраживаемой биомассы.

Эффективное время стабилизации температуры биомассы будет находиться только в диапазоне температуры расплава всего объема парафина до его затвердения (для парафина марки «B5» температура плавления Tплавл=46°C). Таким образом, диапазоны температур до температуры плавления вещества с фазовым переходом и диапазоны после полного расплавления данного объема вещества (перегрев) не могут быть полезно использованы в данном реакторе. Этот недостаток обусловлен тем, что рабочие тела (парафин, металлический натрий) находятся внутри ферментатора-газгольдера. Кроме того, в данном устройстве не предотвращается образование корки, так как при слабом поступлении биогаза спиральная пружина будет срабатывать эпизодически.

Известна также «Автономная система энергоснабжения сельского хозяйства от нетрадиционных возобновляемых источников питания» (аналог) по авторскому свидетельству СССР №1800073, использующих энергию солнца и ветра [7].

В данной системе ставится задача максимального обеспечения тепловой и электрической энергией потребителей с целью «…создать комфортные условия труда и быта людей в районах, удаленных от централизованного электро-, газо-, водо- и теплоснабжения в труднодоступных районах»…, в том числе с использованием солнечной и ветровой энергии.

Данная автономная система содержит тепловую электрическую станцию с котлом, паровой турбиной и конденсатором, солнечную тепловую электростанцию с солнечными коллекторами, тепловой аккумулятор для солнечного коллектора, ветровую станцию, электрохимический аккумулятор, биогазовую установку с блоком распределения газа, инверторы для электрической сети потребителей, трубопроводы, датчики и диспетчерский пульт.

Основным звеном в этой конструкции является теплоэлектрическая станция (ТЭС), которая должна вырабатывать как тепловую и электрическую энергию для потребителей, так и обеспечивать горячей водой тепловой аккумулятор солнечного коллектора, соединенного с теплообменником метантенка биогазовой установки. Топливом для ТЭС служит биогаз с данной установки, которого явно будет недостаточно, поэтому авторы предусматривают для ТЭС дополнительное жидкое или газообразное топливо.

Ветровая станция в системе состоит из двух ветроколес: первое ветроколесо через редуктор работает на мешалку, а второе ветроколесо - на электрический генератор, соединенный через коммутатор и инвертор с сетью.

Выше уже указывалось, что энергия ветра не является стабильной величиной и требуемый режим перемешивания биомассы мешалкой от ветра не будет обеспечен [5], так как при отсутствии ветра не работает первое ветроколесо и отсутствует перемешивание биомассы, а при длительном отсутствии солнечной инсоляции работа биогазовой установки зависит от ТЭС. Работа второго ветроколеса на генератор, как указывают авторы, обеспечивается только в «ветренные дни», которых чрезвычайно мало на равнинных территориях страны.

Основной недостаток данной системы в наличии ТЭС, без которой она не работоспособна. Кроме того, это устройство сложно в реализации, что обусловлено требованиями к ее автономности и необходимости снабжать потребителей (коммунально-бытовых и производственных) как тепловой так еще и электрической энергией.

В отличие от данного аналога «Биогазовая установка», предлагаемая авторами, решает задачу максимальной выработки биогаза путем создания оптимальных режимов непрерывного сбраживания биомассы. Наиболее близким техническим решением (прототипом), решающим настоящую задачу, является «Установка для анаэробного сбраживания органических отходов с получением биогаза» по патенту РФ №2073360, заявитель АО Центр «ЭкоРос» [8].

Данная установка содержит камеры сбраживания в метантенке и энергетический блок, подключенный к газгольдеру по линии отбора биогаза с метантенка. Энергетический блок, сжигая биогаз, вырабатывает тепловую и электрическую энергию. Тепловая энергия с блока через элементы регулирования и теплообменники в виде тепловых рубашек поступает в камеры сбраживания. Водяные рубашки камер брожения снабжены также теплоэлектронагревателями, подключенными к линии электроэнергии с энергетического блока.

Недостатком прототипа, так же как и предыдущего аналога, является наличие энергетического блока (ТЭС), запитанного по топливу-биогазу от метантенка данной установки. Таким образом, в холодное время года биогаз не будет вырабатываться в необходимых объемах для работы энергетического блока (ТЭС) или он будет использоваться только для собственных нужд, т.е. только для поддержания необходимых температурных режимов камер сбраживания. В данной установке не используется дополнительный внешний теплоаккумулятор с большой теплоемкостью, тепловая энергия с которого могла бы накапливаться, в том числе, от источников возобновляемой энергии и от избыточной (неиспользуемой) в данный момент электроэнергии сетей, что позволило бы работать установке и в холодное время года.

Задачей настоящего изобретения является устранение указанных недостатков установки прототипа.

Технический результат предлагаемого решения заключается в повышении эффективности работы биогазовых установок и увеличении объема перерабатываемой биомассы.

Конкретные формы выполнения технического результата выражаются в следующем:

- увеличение объема вырабатываемого биогаза, в том числе, в холодное время года, за счет использования внешнего автономного теплоаккумулятора большой теплоемкости, входящего в состав блока источников возобновляемой энергии;

- увеличение эффективности работы БГУ за счет экономии энергоресурсов путем нагрева теплоаккумулятора через использование разных источников возобновляемой тепловой и электрической энергии, в том числе - электроэнергии по дешевым ночным тарифам от сетей с избыточной (не востребованной в данный период) электрической энергии;

- увеличение объемов перерабатываемой биомассы путем присоединения к автономному внешнему теплоаккумулятору нескольких метантенков, обеспечиваемых тепловой и электрической энергией от блока источников возобновляемой энергии.

В результате поиска по источникам патентной и научно-технической информации совокупность признаков, характеризующая описываемую «Биогазовую установку», авторами не обнаружена.

Таким образом, предлагаемое техническое решение соответствует критерию «новизна».

На основании сравнительного анализа предложенного решения с известным уровнем техники можно утверждать, что между совокупностью отличительных признаков, выполняемых ими функций и достигаемой задачи предложенное техническое решение не следует явным образом из уровня техники и соответствует критерию охраноспособности «изобретательский уровень».

Предложенное техническое решение может найти применение в составе любых метантенков биогазовых установок для увеличения эффективности их работы, уменьшения времени сбраживания и увеличения объема перерабатываемой биомассы.

На чертеже изображена структурная схема предлагаемой «Биогазовой установки».

Биогазовая установка содержит стандартный теплоизолированный метантенк 1 с экструдером-смесителем 2 для измельчения биомассы, камерами 3, 4, 5 соответственно гидролизного, кислотного и метанового брожения, оснащенными теплообменниками 6, 7, 8, электромешалками 9 и насосами 10. Биогаз с метановой секции метантенка поступает в газгольдер 11.

К метантенку присоединен блок 12 источников возобновляемой и другой избыточной энергии, обеспечивающий тепловую и электрическую энергию для поддержания оптимальных процессов брожения.

В зависимости от наличия и величины ветровой или гидравлической энергии используется в работе ветроэнергетическая установка 13 или гидротурбина 14, которые через многоступенчатый мультипликатор 15 вращают электрический генератор 16, соединенный с первым ТЭНом 17 теплоаккумулятора 18 с большой теплоемкостью в теплоизолированном корпусе. Для увеличения вырабатываемой тепловой энергии на другой выход мультипликатора присоединен вихревой теплогенератор 19, нагруженный через вентиль 20 на первый теплообменник 21 теплоаккумулятора. При наличии солнечной энергии используется в работе солнечный коллектор 22, передающий тепловую энергию через вентиль 23 на второй теплообменник 24 теплоаккумулятора. Второй ТЭН 25 теплоаккумулятора через первый переключатель 26 подсоединен к электрической сети 27, второй переключатель 28 нормальнозамкнутым контактом соединен с генератором, нормальноразомкнутым контактом подключен к сети, а его переключающий контакт соединен с потребителями электроэнергии в метантенке: экструдером-смесителем, насосами, электрическими мешалками и др. (Электрические датчики, пульт управления на чертеже не показаны). Холодная вода из магистрали подается на вход 29 теплоаккумулятора, горячая вода с его выходов 30, 31, 32, 33 поступает соответственно через вентили 34, 35, 36 в теплообменники камер метанового, кислотного и гидролизного брожения, а через вентиль 37 - в экструдер-смеситель. К выходу метановой камеры метантенка подключен сепаратор 38 сброженного сырья, на одном выходе которого выделяется сухой остаток, а отсепарированная жидкость подается обратно в камеры метантенка.

Блок 12 источников возобновляемой и другой избыточной энергии может обеспечивать работу нескольких метантенков, передавая или тепловую энергию через дополнительные теплоизолированные трубопроводы и вентили 39, 40, 41, 42, или электрическую - через дополнительный кабель и третий переключатель 43.

Биогазовая установка работает следующим образом. Биомасса поступает в экструдер-смеситель 2, куда подается также через вентиль 37 заранее накопленная горячая вода из теплоаккумулятора 18. Из экструдера-смесителя 2 измельченная биомасса передается в камеру 3 гидролизного брожения и далее, в процессе сбраживания, - в камеру 4 кислотного и 5 камеру метанового брожения. В каждой камере должна быть своя определенная рабочая температура, которая обеспечивается в необходимых количествах подачей горячей воды в теплообменники 6, 7, 8 камер 3, 4, 5 метантенка через регулирующие клапаны 36, 35, 34, подключенные к соответствующим выходам 32, 31, 30 теплоаккумулятора 18.

Предварительное накопление тепловой энергии в теплоаккумуляторе с большой теплоемкостью может осуществляться от одного или нескольких источников возобновляемой энергии, а также от электросетей с «провальной» ночной энергии по дешевым тарифам, т.е. когда сети имеют избыточную невостребованную энергию. В частности, при наличии гидравлической энергии и работе гидротурбины 14, механическая энергия которой передается через многоступенчатый мультипликатор 15 на электрический генератор 16, последним вырабатывается электрическая энергия для первого ТЭНа 17, греющего воду в теплоаккумуляторе.

При наличии энергии ветра ветроустановка 13 также вращает мультипликатор 15, причем на его выходах кроме электрического генератора может быть подключен вихревой теплогенератор 19, подающий горячую воду через вентиль 20 в первый теплообменник 21 теплооаккумулятора.

Солнечный коллектор 22 нагревает горячую воду при достаточной солнечной инсоляции и передает ее через вентиль 23 во второй теплообменник 24 теплоаккумулятора.

При отсутствии энергии от возобновляемых источников ТЭН 25 теплоаккумулятора подключают через первый переключатель 26 к электрической сети 27 во время действия ночных дешевых по стоимости тарифов, например, с помощью программных реле-часов (не показаны на чертеже).

Электрическая энергия поступает на экструдер-смеситель 2, электрические мешалки 9, насосы 10 и другую аппаратуру, требующую электрического питания, через нормальнозамкнутые контакты второго переключателя 28 от генератора 16 либо от сети 27 через первый переключатель 26 и замкнувшиеся ранее разомкнутые контакты переключателя 28 во время действия ночных тарифов.

Биогаз из камеры 5 метанового брожения метантенка 1 поступает в газгольдер 11 и далее - потребителям.

Сброженный осадок из камеры 5 передается на сепаратор 38, с одного выхода которого сухой остаток также поступает потребителям как ценное удобрение, а отсепарированная жидкость, сохранившая тепло камер метантенка, направляется по теплоизолированным трубопроводам обратно в камеры. Эта жидкость насыщена метановыми бактериями, что способствует быстрому их воспроизводству и сокращению общего времени брожения.

Такого рода циркуляция жидкости: из теплоаккумулятора 18 в экструдер-смеситель 2 для подогрева биомассы и далее последовательно в камеры 3, 4, 5 брожения, затем из камеры 5 в сепаратор 38, а из сепаратора 38 отжатая еще не остывшая жидкость поступает в камеры 4, 5 кислого и метанового брожения, создает условия для максимальной экономии тепловой и электрической энергии. Кроме того, создается также экономия за счет меньшего требуемого объема подпиточной воды из магистрали, подаваемой на вход 29 теплоаккумулятора 18, и, соответственно, меньшие затраты энергии на ее догрев до температуры общей массы воды, находящейся в теплоаккумуляторе.

В настоящее время обычно метантенки обогреваются за счет сжигания большей части собственного выработанного биогаза или за счет разогрева всего объема жидкости в камерах от электросети в течение суток и более [1, 7, 8].

При наличии центрального теплоаккумулятора большого объема с достаточной теплоемкостью по предлагаемой схеме и предварительным накоплением тепловой энергии от возобновляемых источников энергии или от избыточной (невостребованной) в данный момент электроэнергии представляется возможным значительно увеличить объемы переработки биомассы за счет использования в составе биогазовой установки нескольких метантенков, в которые горячая вода подается по вентилям 39, 40, 41, 42, а электроэнергия - через третий переключатель 43.

Предлагаемая установка может найти широкое применение, в том числе, в зонах холодного климата с большим числом градусо-суток отопительного перепада.

Источники информации

1. Арбузова Е.В., Щеклеин С.Е. К проблеме энергетической эффективности биогазовых технологий в климатических условиях России. //Альтернативная энергетика и экология. 2011, №7, с.108-110.

2. Авторское свидетельство №1527191. СССР. МПК C02F 03/28. Биоэнергокомплекс. В.И. Селиванов, А.А Баланюк и др. - №4276522; заявл. 06.07.87; опубл. 07.12.89 (аналог).

3. Патент №2065408 РФ. МПК C02F 3/28; C02F 11/04. Биогазовая установка. А.К. Ильин; О.П. Ковалев, В.А. Тимошенко. - №94011881; заявл. 05.04.94; опубл. 20.08.96. (аналог).

4. Янко В.Г., Янко Ю.Г. Обработка сточных вод и осадка в метантенках. Киев, 1978, 120 с.

5. Виестур У.Э., Кузнецов A.M.; Савенков В.В. Системы ферментации. - Рига, 1986, 174 с.

6. Авторское свидетельство №1583367 СССР. МПК C02F 3/28. Ферментатор-газгольдер. А.И. Еламанов. - №449484; заявл. 18.10.88; опубл. 07.08.90. (аналог).

7. Авторское свидетельство №1800073 ССР. МПК F01K 13/00 Автономная система энергоснабжения сельского хозяйства от нетрадиционных возобновляемых источников энергии. М.И. Гончар и др. - №4866897/06; заявл. 05.06.90. Опубл. 07.03.93.(аналог).

8. Патент №2073360 РФ. МПК C02F 11/04. Установка для анаэробного сбраживания органических отходов с получением биогаза. Е.С. Панцхава и др. Заявитель АО Центр «ЭкоРос». Заявл. 9405177/26 от 19.12.94. Опубл. 10.02.97. (прототип).

9. Патент №2315721 РФ. МПК C02F 3/28; C02F 11/04. Способ анаэробной переработки органических отходов и установка для его осуществления. В.В. Мохов, Е.В. Фомичева. - 2006110378; заявл. 03.04.2006; опубл. 27.01.2008. (аналог).

10. Авторское свидетельство №1353753 СССР. МПК C02F 11/04 Метантенк. А.А. Ковалев, В.П. Лосяков.- №4036561; заявл. 12.03.86; опубл. 23.11.87. (аналог).


БИОГАЗОВАЯ УСТАНОВКА
Источник поступления информации: Роспатент

Showing 21-30 of 127 items.
20.08.2014
№216.012.ec0b

Способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной...
Тип: Изобретение
Номер охранного документа: 0002526235
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ee63

Бесщеточная электрическая машина

Изобретение относится к области электротехники к электрическим машинам с магнитами на статоре и может быть использовано в электрических приводах машин и механизмов, а также в генераторах электрической энергии. Бесщеточная машина содержит ротор, включающий вал и не менее одного зубчатого венца...
Тип: Изобретение
Номер охранного документа: 0002526846
Дата охранного документа: 27.08.2014
20.10.2014
№216.012.fe8c

Устройство для раздачи труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочие ролики установлены параллельно оси корпуса устройства. При этом рабочая часть корпуса содержит шток, снабженный коническим элементом, выполненным с возможностью осевого перемещения,...
Тип: Изобретение
Номер охранного документа: 0002531020
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9f

Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров многокомпонентных металлических расплавов методом геометрии «большой капли», т.е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли...
Тип: Изобретение
Номер охранного документа: 0002531039
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fea4

Рабочее вещество осл-детектора

Изобретение относится к области дозиметрии ионизирующих излучений, а именно к области оптически стимулированной люминесцентной (ОСЛ) дозиметрии, связанной с разработкой и применением рабочих веществ для ОСЛ-детекторов, пригодных для регистрации рентгеновского, гамма- и электронного излучения, а...
Тип: Изобретение
Номер охранного документа: 0002531044
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feb0

Способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля

Изобретение относится к измерительной технике, представляет собой способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля и может использоваться для анализа материалов, в частности металлов и сплавов в...
Тип: Изобретение
Номер охранного документа: 0002531056
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feba

Устройство для крепления электронагревателя в электропечи

Изобретение относится к технической физике, а именно к анализу материалов путем определения вязкости и электрического сопротивления и плотности высокотемпературных металлических расплавов. Предлагается устройство для крепления электронагревателя в электропечи, содержащее, по крайней мере, два...
Тип: Изобретение
Номер охранного документа: 0002531066
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.01bb

Низкооборотный генератор для ветросиловой установки

Изобретение относится к области энергетики и предназначено для использования в низкооборотных ветросиловых установках для преобразования ветровой энергии в электрическую. Низкооборотный генератор для ветросиловой установки в бескорпусной конструкции содержит соединенный с валом ветросиловой...
Тип: Изобретение
Номер охранного документа: 0002531841
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.02fe

Способ синтеза 5,5'-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена) - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 5,5'-(2,3,7,8-бис-(9Н,10Н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена), который включает взаимодействие 1,6-дибромпирена с 2-додецил-5-трибутилстаннилтиофеном по методу Стилле с получением первого полупродукта...
Тип: Изобретение
Номер охранного документа: 0002532164
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.03f0

Способ потенциометрического определения антиоксидантной/оксидантной активности с использованием комплексов металлов

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения...
Тип: Изобретение
Номер охранного документа: 0002532406
Дата охранного документа: 10.11.2014
Showing 21-30 of 200 items.
27.06.2013
№216.012.4fcc

Способ производства труб

Изобретение предназначено для повышения точности и стабильности труб, получаемых волочением. Способ включает волочение трубы на длинной подвижной оправке через ряд роликовых волок. Повышение скорости волочения и величины деформации обеспечивается за счет того, что волочение проводят непрерывно...
Тип: Изобретение
Номер охранного документа: 0002486021
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.4fcf

Устройство для внутреннего профилирования труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочая часть корпуса выполнена в виде двух или более шпинделей, установленных один внутри другого с возможностью поворота относительно своей продольной оси, а ролики установлены на концевых...
Тип: Изобретение
Номер охранного документа: 0002486024
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50d1

Способ получения имплантированного ионами олова кварцевого стекла

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова. Упомянутый способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию...
Тип: Изобретение
Номер охранного документа: 0002486282
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5736

Метод определения неоплодотворенных яиц дрозофилы

Изобретение относится к области биохимии. Неразвившиеся яйца помещают на 45-50 минут в четырехпроцентный раствор гипохлорита натрия (NaOCl) и по количеству растворенных яиц определяют количество неоплодотворенных яиц. Предложенный метод позволяет осуществить массовые исследования достаточно...
Тип: Изобретение
Номер охранного документа: 0002487934
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59e9

Способ извлечения платины из шлама, получаемого при растворении платиносодержащего чугуна в серной кислоте

Изобретение относится к металлургии благородных металлов, в частности к переработке шламов и концентратов, содержащих элементные кремний, углерод и платину. Подобные шламы, в частности, образуются при растворении платиносодержащего чугуна в серной кислоте. Шламы смешивают с карбонатом натрия...
Тип: Изобретение
Номер охранного документа: 0002488638
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5cb5

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Выщелачивают глиноземсодержащее сырье с получением алюминатного раствора и красного шлама, отделяют красный шлам от алюминатного раствора и его подают на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид...
Тип: Изобретение
Номер охранного документа: 0002489354
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.6000

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Глиноземсодержащее сырье выщелачивают с получением алюминатного раствора, отделяют его от красного шлама и направляют алюминатный раствор на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия....
Тип: Изобретение
Номер охранного документа: 0002490208
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.6721

Способ изготовления корпуса транспортно-пускового контейнера из композиционных материалов (варианты)

Изобретение относится к области ракетной техники, в частности к способам изготовления корпусов транснортно-пусковых контейнеров трубчатой конструкции из композиционных материалов на основе волокнистых армирующих материалов и полимерных связующих. Способ включает намотку внутреннего силового...
Тип: Изобретение
Номер охранного документа: 0002492048
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.727c

Способ переработки бокситов на глинозем

Изобретение относится к способу переработки бокситов на глинозем. Способ включает размол боксита в оборотном растворе, выщелачивание, сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроокиси алюминия и...
Тип: Изобретение
Номер охранного документа: 0002494965
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.746a

Оптический монокристалл

Монокристаллы предназначены для ИК-техники и для изготовления из них методом экструзии одно- и многомодовых ИК-световодов для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные...
Тип: Изобретение
Номер охранного документа: 0002495459
Дата охранного документа: 10.10.2013
+ добавить свой РИД