×
10.01.2015
216.013.1d6b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на наноуглеродных носителях включает обработку наноуглеродного компонента с помощью платинохлористоводородной кислоты с последующим восстановлением последней этиленгликолем в щелочной среде, при этом углеродные наночастицы предварительно подвергают функциализации кипячением в концентрированной азотной кислоте, промывают после этого дистиллированной водой до нейтрального pH, высушивают в вакууме при температуре 40°C, после чего углеродные наночастицы помещают в колбу, содержащую дистиллированную воду и платинохлористоводородную кислоту, добавляют этиленгликоль и двухнормальный раствор NaOH до pH ≈ 12-14, смесь перемешивают в ультразвуковой бане, затем нагревают до 140-150°C при непрерывном перемешивании этой смеси в токе аргона, затем добавляют полиэтиленгликоль с молекулярной массой MM ~ 40000, после этого смесь охдаждают до комнатной температуры, помещают в центрифугу и промывают дистиллированной водой до нейтрального рН с последующей сушкой в вакууме при 40°C до постоянного веса. Технический результат заключается в получении катализатора с более монодисперсным и регулируемым распределением наночастиц платины по размеру, что приводит к экономии электроэнергии, трудовых затрат и к удешевлению получаемых катализаторов. 3 ил., 1 пр.

Предложение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов используют платинусодержащие углеродные материалы.

Известен способ нанесения платины на углеродный материал методом пропитки, который включает в себя осаждение на углеродную поверхность и восстановление прекурсора - гидрата платинохлористоводородной кислоты (H2PtCl6 H2O) - с помощью сильных восстановителей (H2N4, формальдегида - CH2O+H2O, NaBH4) или одновременное добавление щелочного и восстанавливающего агента (NaOH+HOCH2CH2OH) [Герасимова Е.В., Тарасова Б.П. Платина на углеродных носителях - катализатор процессовы в низкотемпературных топливных элементах. Альтернативная энергетика и экология. 2009. №8. С.78].

Существенным недостатком этого способа является полидисперсность получаемых частиц платины по размерам, что неизбежно сказывается на каталитических свойствах данных материалов. Кроме того, присущая этому способу трудоемкость обработки соответствующего углеродного носителя - Vulkan XC-72 (сначала 4 часовое кипячение в 70% азотной кислоте при температуре 160°C, затем 4-часовое кипячение в смеси азотной и серной кислот).

Наиболее близким по сущности и достигаемому результату является способ получения Pt на угле (Pt/C), в котором используются восстановительные свойства этиленгликоля в щелочной среде [Wanzhen Li, Changhai Liang, Weijiang Zhou, Jieshan Qiu, Zhenhua Zhou, Gonghuan Sun and Qin Hi. Preparation and Characterization of Multiwalled Carbon nanotube supported for cathode catalyze of direct methanol fuel cells, 20% Pt. // J. Phys. Chem. B.V. 26 P.6292-6299].

Сущность прототипа состоит в следующем: для восстановления прекурсора используется этиленгликоль в щелочной среде (рН ≈ 10-12) при нагревании до 160°C в течение 3-5 часов в атмосфере аргона.

Существенными недостатками прототипа являются неоднородность поверхности катализатора, связанная с агрегацией образующихся платинусодержащих наночастиц, что снижает каталитическую активность данных материалов, и длительная трудоемкая процедура обработки углеродного носителя - Vulkan XC-72 (сначала 4-часовое кипячение в 70% азотной кислоте при температуре 160°C, затем 4-часовое кипячение в смеси азотной и серной кислот).

Технической задачей и положительным результатом разработанного заявителями способа является то, что за счет добавления полиэтиленгликоля (препятствующего агрегации образующихся наночастиц Pt/C) способ позволяет получить катализатор с более монодисперсным и регулируемым распределением наночастиц платины по размеру, который во многом определяет каталитическую активность наночастиц платины и эффективность катализатора в целом. Кроме того, способ приводит к экономии электроэнергии и трудовых затрат, а также к удешевлению получаемых катализаторов.

Указанная задача и технический результат достигаются в способе получения Pt-содержащих катализаторов, включающем обработку наноуглеродного компонента с помощью платинохлористовододродной кислоты с последующим восстановлением последней этиленгликолем в щелочной среде, при этом углеродные наночастицы предварительно подвергают функциализации кипячением в концентрированной азотной кислоте, промывают после этого дистиллированной водой до нейтрального pH, высушивают в вакууме при температуре 40°C, после чего углеродные наночастицы помещают в колбу, содержащую дистиллированную воду и платинохлористоводородную кислоту, добавляют этиленгликоль и двухнормальный раствор NaOH до pH ≈ 12-14, смесь перемешивают в ультразвуковой бане, затем нагревают до 140-150°C при непрерывном перемешивании этой смеси в токе аргона, затем добавляют полиэтиленгликоль с молекулярной массой ММ ≈ 40000, после этого смесь охлаждают до комнатной температуры, помещают в центрифугу и промывают дистиллированной водой до нейтрального pH с последующей сушкой в вакууме при 40°C до постоянного веса. Способ характеризуется тем, что на 100 мг углеродного продукта с размером частиц 8-10 нм берут 5 мл дистиллированной воды, 160 мг платинохлористоводородной кислоты, 10 мл двухнормальной щелочи NaOH. Способ характеризуется также тем, что полиэтиленгликоль вводят в состав смеси в количестке 20 мг. Способ раскрывается на примере его осуществления.

Пример. 100 мг наноуглеродного компонента типа «Таунит М» (размер частиц ~ 8-10 нм), предварительно функциализированного кипячением в течение 5 минут в коцентрированной азотной кислоте, промытого до нейтрального pH дистиллированной водой и тщательно высушенного в вакууме при 40°C, поместили в 3-горлую колбу на 100 мл, залили 5 мл дист. воды, добавили 160 мг H2PtCl6, 10 мл этиленгликоля и 7.5 мл двухнормального NaOH (pH ≈ 12-14). Смесь перемешивали в ультразвуковой бане 15 минут, после чего нагревали при перемешивании механической мешалкой в токе аргона в течение 1.5 часов до 140-150°C. После этого в колбу добавляют 20 мг полиэтиленгликоля с молекулярной массой ММ ≈ 40000. После охлаждения до комнатной температуры смесь помещали в центрифугу для отделения осадка и промывали дистиллированной водой до нейтрального pH. Осадок сушили в вакууме при 40°C до постоянного веса. Содержание Pt в полученном наноуглеродном продукте составляло 20% вес.

По данным электронного микроскопа марки SUPRA 55VP 32-49 размер наночастиц платины составил 2-4 нм.

Эффективность полученного катализатора была проверена с помощью мембранно-электродного блока (МЭБ), схема которого представлена на фиг.1. Средняя загрузка платины на электродах составляла 1.30±0.05 мг/см2 для всех образцов. Активная площадь электродов составляла 1.00±0.05 см2.

На фиг.2 представлены поляризационные (вольтамперные) характеристики соответствующих МЭБ в составе ВВТЭ (E-Tek - известный катализатор [Philippe S., Jose Luis Figueiredo. Carbon Materials for Catalysis. John Wiley and Sons. P.324, 444, 579]; TaunitM - катализатор, разработанный заявителями на носителе «Таунит М» с предварительной обработкой в азотной кислоте). Измерения проводились при комнатной температуре, при подаче на анод сухого водорода и на катод сухого воздуха.

На фиг.3 представлены мощностные характеристики МЭБ. Максимальная мощность МЭБ с использованием разработанного катализатора составила 122 мВт, в то время как катализатор E-Tek показал максимальную мощность 109 мВт.

Таким образом, созданный по заявленному способу платинусодержащий катализатор на наноуглеродном носителе по свойствам и эффективности превосходит известный базовый катализатор; при этом достигается сокращение энерго- и трудозатрат на процессе получения платинусодержащего катализатора на наноуглеродном носителе.


СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ
СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ
СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ
Источник поступления информации: Роспатент

Showing 71-80 of 208 items.
20.11.2015
№216.013.9268

Способ озонирования углеродных наноматериалов

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в...
Тип: Изобретение
Номер охранного документа: 0002569096
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92aa

Тонкопленочный солнечный элемент

Тонкопленочный солнечный элемент содержит светопрозрачную подложку (1), на которую последовательно нанесены светопрозрачная электропроводящая пленка (2), p-слой (3) из микрокристаллического гидрогенизированного кремния в виде твердого раствора SiC:H, где 0,7<х<0,95, с оптической шириной...
Тип: Изобретение
Номер охранного документа: 0002569164
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.965e

Способ получения водорастворимых полимерных комплексов радиоизотопов

Изобретение относится к способу получения водорастворимых полимерных комплексов радиоизотопов и может быть использовано в области высокомолекулярных соединений и медицине. Способ получения водорастворимых полимерных комплексов радиоизотопов заключается в том, что вначале получают полимер...
Тип: Изобретение
Номер охранного документа: 0002570114
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97c3

Способ определения ориентации nv дефектов в кристалле

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации...
Тип: Изобретение
Номер охранного документа: 0002570471
Дата охранного документа: 10.12.2015
27.12.2016
№216.013.9e42

Способ получения порошкового сорбента

Изобретение относится к области сорбционной техники, в частности к способу получения сорбентов для очистки воздуха от неорганических одорантов и микроколичеств высокотоксичных органических веществ. Способ включает приготовление пропиточного раствора, пропитку им активного угля, вылеживание,...
Тип: Изобретение
Номер охранного документа: 0002572144
Дата охранного документа: 27.12.2015
27.02.2016
№216.014.c07e

Способ получения кристаллических алмазных частиц

Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас. % до 58 мас. %, выдержку...
Тип: Изобретение
Номер охранного документа: 0002576055
Дата охранного документа: 27.02.2016
27.03.2016
№216.014.c751

Концентраторный солнечный фотоэлектрический модуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из...
Тип: Изобретение
Номер охранного документа: 0002578735
Дата охранного документа: 27.03.2016
27.02.2016
№216.014.ce4c

Способ изготовления фотопреобразователя на основе gasb

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb. Наносят на лицевую поверхность подложки диэлектрическую...
Тип: Изобретение
Номер охранного документа: 0002575972
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.ce65

Способ изготовления гетероструктурного солнечного элемента

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение...
Тип: Изобретение
Номер охранного документа: 0002575974
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.cf0a

Способ формирования многослойного омического контакта к прибору на основе арсенида галлия

Изобретение относится к технологии полупроводниковых приборов. Способ формирования многослойного омического контакта включает предварительное формирование фотолитографией маски из фоторезиста на поверхности арсенида галлия электронной проводимости, очистку свободной от маски поверхности...
Тип: Изобретение
Номер охранного документа: 0002575977
Дата охранного документа: 27.02.2016
Showing 71-80 of 175 items.
10.05.2016
№216.015.3ae5

Способ получения биосовместимого органо-неорганического композита на основе целлюлозы gluconacetobacter xylinus и гидроксиапатита

Изобретение относится к медицине, конкретно к области биотехнологических материалов медицинского и технического применения, и может найти использование прежде всего в качестве прекурсора костной ткани, косметики или при создании керамических изделий. Описан способ, который характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002583925
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cea

Фотолюминесцентный полимерный композиционный материал для светоизлучающих систем

Изобретение относится к новым композиционным полимерным материалам для светоизлучающих систем. Предложен фотолюминесцентный полимерный композиционный материал, включающий 1,6 мас.% полифенилхинолина (ПФХ) - поли[2,2′-(9-додецилкарбазол-3,6-диил)-6,6′-(окси)бис(4-фенилхинолина)] или...
Тип: Изобретение
Номер охранного документа: 0002583267
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.4463

Способ получения слоистого пластика

Изобретение относится к области изготовления слоистых пластиков, которые могут быть использованы в авиа- и судостроении. Способ получения слоистого пластика заключается в получении связующего, модифицированного углеродными нанотрубками посредством совместного диспергирования углеродных...
Тип: Изобретение
Номер охранного документа: 0002586149
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4855

Способ получения антистатического полипропиленового волокна с улучшенными механическими свойствами

Изобретение относится к способу получения антистатического полипропиленового волокна с улучшенными механическими свойствами, которое может быть использовано в машиностроении, химической, электротехнической и легкой промышленности. Сущность способа заключается в том, что экструдированные из...
Тип: Изобретение
Номер охранного документа: 0002585667
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4875

Инжекционный лазер

Использование: для полупроводниковых инжекционных лазеров. Сущность изобретения заключается в том, что инжекционный лазер на основе полупроводниковой гетероструктуры раздельного ограничения, включающей многомодовый волновод, первый и второй широкозонные ограничительные слои, являющиеся...
Тип: Изобретение
Номер охранного документа: 0002587097
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4aec

Интегрально-оптический элемент

Интегрально-оптический элемент, включающий подложку из кристалла ниобата лития, встроенный в подложку оптический волновод, образованный термической диффузией титана из титановой полоски шириной 3-7 мкм и толщиной 60-80 нм, нанесенной на поверхность подложки. Глубина оптического волновода равна...
Тип: Изобретение
Номер охранного документа: 0002594987
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.526a

Способ получения водорастворимых сополимеров n-виниламидов, содержащих альдегидные группы

Изобретение относится к способу получения водорастворимых сополимеров N-виниламидов, содержащих альдегидные группы, путем радикальной сополимеризации N-винилпирролидона или N-метил-N-винилацетамида с непредельным мономером, содержащим защищенную альдегидную группу, с последующим удалением...
Тип: Изобретение
Номер охранного документа: 0002594253
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.589f

Способ получения синтетических металл-полимерных комплексов радиоизотопа галлия-68

Изобретение относится к области химии высокомолекулярных соединений и ядерной медицины, а именно к способу получения синтетических металл-полимерных комплексов радиоизотопов галлия-68. Комплекс включает водорастворимый сополимер N-винилпирролидона с аллил- или N-виниламином с молекулярной...
Тип: Изобретение
Номер охранного документа: 0002588144
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b6b

Способ определения тока в канале электрического пробоя диэлектрика

Изобретение относится к области физики электрического пробоя и может быть использовано для определения амплитуды и длительности импульса тока электрического пробоя в диэлектриках. Технический результат: повышение точности определения тока в канале электрического пробоя диэлектриков. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002589509
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f1a

Солнечный элемент

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Солнечный элемент согласно...
Тип: Изобретение
Номер охранного документа: 0002590284
Дата охранного документа: 10.07.2016
+ добавить свой РИД