×
10.01.2015
216.013.17ce

Результат интеллектуальной деятельности: СПОСОБ ТРИАНГУЛЯЦИОННОГО ИЗМЕРЕНИЯ ТОЛЩИНЫ ЛИСТОВЫХ ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. Техническим результатом изобретения является повышение точности определения толщины листового изделия. В способе триангуляционного измерения толщины листовых изделий осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, как минимум три с каждой стороны изделия. Источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников. Толщину листового изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листового изделия в области их пересечения. Способ триангуляционного измерения толщины листовых изделий позволяет измерять толщину листового изделия при его произвольной ориентации в измерительном объеме. 2 ил.
Основные результаты: Способ триангуляционного измерения толщины листовых изделий, при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, отраженное от листового изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояние от центров оптических систем до поверхности листового изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве, отличающийся тем, что зондирующих пучков излучения как минимум три с каждой стороны изделия, причем источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников, при этом толщину листового изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листового изделия в области их пересечения.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий.

Известен способ триангуляционного измерения толщины листовых изделий (авторское свидетельство СССР №1647249 «Фотоэлектрическое устройство для измерения профиля и толщины изделий сложной формы», 1988 г., G01B 21/00), при котором осуществляют подачу листового изделия в зону измерения, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, а толщину изделия вычисляют по формуле:

h=T-A-B, где

T - расстояние между центрами первой и второй оптических систем (величина постоянная, задается конструктивно);

A и B - соответственно расстояния от центров первой и второй оптических систем до поверхности изделия.

Измерение толщины изделия по такому способу осуществляется без учета его наклона, что снижает точность измерений.

Известен также способ триангуляционного измерения толщины листовых изделий с учетом наклона (авторское свидетельство СССР №1826698 «Способ бесконтактного измерения толщины», 1990 г., G01B 11/06), при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, кроме того, с одной из сторон на листовое изделие направляют дополнительный зондирующий пучок излучения, ориентированный параллельно двум другим зондирующим пучкам и отстоящий от них на заданном расстоянии, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве.

Недостатком такого способа является низкая точность измерений, так как при измерениях учитывается наклон листового изделия только в продольном направлении (направлении подачи изделия) и не учитывается его наклон в поперечном направлении (направлении, перпендикулярном направлению подачи изделия).

Известен способ триангуляционного измерения толщины листовых изделий с учетом наклона в продольном и поперечном направлениях (авторское свидетельство СССР №1728647 «Способ измерения толщины листовых изделий», 1988 г., G01B 11/06), при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, кроме того, с одной из сторон на листовое изделие направляют два дополнительных зондирующих пучка излучения, ориентированных параллельно двум другим зондирующим пучкам, при этом все четыре пучка не лежат вместе в одной плоскости, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, а толщину изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве.

К недостаткам данного способа относятся:

1. Низкая точность измерения, так как наклон листового изделия определяется лишь по наклону одной (верхней) поверхности изделия, не учитывая при этом возможно иной наклон другой (нижней) поверхности, вызванный изменением толщины изделия или его искривлением;

2. Необходимость использования сложных оптических систем, содержащих непрозрачные и полупрозрачные зеркала (плоскопараллельные пластины), неудобные при настройке и эксплуатации.

Наиболее близким по технической сущности заявляемому является способ триангуляционного измерения толщины листовых изделий (Авторское свидетельство СССР №1826697 «Способ бесконтактного измерения толщины объекта», 1990 г., G01B 11/06), учитывающий наклон изделия как в продольном, так и в поперечном направлениях, при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, кроме того, с обеих сторон на листовое изделие направляют два дополнительных зондирующих пучка излучения. Дополнительные пучки ориентированы параллельно двум другим зондирующим пучкам и расположены от них на заданных расстояниях так, что плоскости, образованные парами пучков, лежащих по одну сторону изделия, ориентированы взаимно перпендикулярно и пересекаются по линии, образованной зондирующими пучками, лежащими на одной прямой. Отраженное от листового изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве.

К недостаткам данного способа относятся:

1. В реальности имеет место одновременное изменение толщины и наклона (коробления) листового изделия по двум координатам, в результате чего на отдельных его участках нижняя и верхняя поверхности могут быть непараллельными друг другу и иметь разный наклон, что не учитывается в данном изобретении;

2. Кроме того, данный способ устанавливает наклон локального участка листового изделия лишь по наклону одной из его поверхностей. При этом не учитывается наклон другой его поверхности.

Задачей предлагаемого изобретения является повышение точности определения толщины листового изделия посредством учета наклона нижней и верхней его поверхностей.

Поставленная задача решается тем, что в способе триангуляционного измерения толщины листовых изделий, при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояние от центров оптических систем до поверхности изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве, согласно изобретению, зондирующих пучков излучения как минимум три с каждой стороны, причем источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников, при этом толщину изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листа в области их пересечения.

Способ триангуляционного измерения толщины листовых изделий представлен на фигуре 1. На изделие 1 с помощью источников излучения оптических систем 2, 3, 4 направляют зондирующие пучки излучения 2', 3' 4' с одной стороны и с помощью источников излучения оптических систем 5, 6, 7 направляют зондирующие пучки излучения 5', 6', 7' с другой стороны. Отраженное от изделия излучение фокусируют на фотоприемники оптических систем 8 и 9, которые могут состоять, например, из фоточувствительной матрицы и фокусирующей линзы.

На фигуре 2 представлена схема расположения пучков излучения на поверхностях изделия. Пучки излучения, расположенные с одной стороны изделия 5', 6', 7', образуют многоугольник (в частности, треугольник) M1. Пучки излучения, расположенные с противоположной стороны изделия 2', 3', 4', образуют многоугольник (в частности, треугольник) М2. Многоугольник М3 образован пересечением многоугольников M1 и М2. Вершины многоугольника М3 лежат в точках к1, к2, к3, к4, к5, к6.

Способ осуществляется следующим образом. На изделие 1 с одной стороны с помощью источников излучения оптических систем 2, 3, 4 направляют зондирующие пучки излучения 2', 3', 4', отраженное от изделия излучение фокусируют на фотоприемнике оптической системы 8. С другой стороны помощью источников излучения оптических систем 5, 6, 7 направляют зондирующие пучки излучения 5', 6', 7', отраженное от изделия излучение фокусируют на фотоприемнике оптической системы 9.

Поскольку геометрическое положение источников излучения оптических систем 2, 3, 4, направление излучения и положение оптической системы 8, принимающей отраженное от изделия излучение, неподвижны в пространстве, то по координатам световых пятен на фотоприемнике оптической системы 8 можно однозначно определить пространственные координаты зондирующих пучков излучения 2', 3', 4' на поверхности изделия. Аналогично определяются пространственные координаты зондирующих пучков 5', 6', 7' на противоположной поверхности изделия 1. Координаты пучков излучения вычисляются с помощью процедуры калибровки, реализация которой представлена ниже.

После определения пространственных координат зондирующих пучков излучения 2', 3', 4', 5', 6', 7' на поверхности изделия 1 вычисляется толщина изделия по следующему алгоритму:

1. Вычисляются пространственные координаты многоугольника M1 - ортогональной проекции многоугольника, образованного пучками излучения 5', 6', 7', на плоскость, образованную многоугольником 2', 3', 4' (многоугольник М2).

2. Вычисляются пространственные координаты вершин многоугольника М3, образованного пересечением многоугольников M1 и М2.

3. Вычисляются пространственные координаты центра масс многоугольника М3, например, следующим образом:

a. Многоугольник М3 разбивается на треугольники k1k2k6, k2k3k6, k3k4k6, k4k5k6.

b. Вычисляются координаты центра масс (xi, yi, zi) и площадь полученных треугольников (Si), используя стандартные геометрические формулы.

c. Вычисляются координаты центра масс многоугольника М3 по формуле

где xi, yi, zi - пространственные координаты i-й вершины многоугольника М3, N - количество вершин многоугольника М3.

Калибровка осуществляется следующим образом. Независимо калибруются источники излучения, чтобы по положению их изображения на фотоприемнике можно определить пространственное положение пучка излучения на контролируемом объекте.

Калибровка может выполняться либо опираясь на геометрическое расположение и направление излучения источников и расположение приемников излучения, либо с использованием плоской калибровочной поверхности, смещаемой на известное расстояние перпендикулярно плоскости поверхности.

В результате калибровки для каждого источника излучения будет получена зависимость

где m, n - координаты изображения пучка излучения на фотоприемнике, Kx, Ky, Kz - функции зависимости соответствующих пространственных координат от координат изображения пучка на фотоприемнике.

Функции Kx, Ky, Kz представляют собой монотонные функции, близкие к линейным.

Таким образом, способ триангуляционного измерения толщины листовых изделий позволяет измерять толщину листового изделия при его произвольной ориентации в измерительном объеме. Изобретение может применяться, например, в металлургической промышленности для измерения толщины горячего и холодного металлопроката.

Способ триангуляционного измерения толщины листовых изделий, при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, отраженное от листового изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояние от центров оптических систем до поверхности листового изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве, отличающийся тем, что зондирующих пучков излучения как минимум три с каждой стороны изделия, причем источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников, при этом толщину листового изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листового изделия в области их пересечения.
СПОСОБ ТРИАНГУЛЯЦИОННОГО ИЗМЕРЕНИЯ ТОЛЩИНЫ ЛИСТОВЫХ ИЗДЕЛИЙ
СПОСОБ ТРИАНГУЛЯЦИОННОГО ИЗМЕРЕНИЯ ТОЛЩИНЫ ЛИСТОВЫХ ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Showing 21-30 of 96 items.
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
Showing 21-30 of 64 items.
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
+ добавить свой РИД