×
20.12.2014
216.013.125b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МИКРОСЛИТКОВ ИЗ РАСПЛАВА МЕТОДОМ ЦЕНТРОБЕЖНОГО РАСПЫЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, к области производства слитков, предназначенных для последующей переработки методом горячего изостатического прессования (ГИП). Способ получения микрослитков из расплава методом центробежного распыления включает плавление литой заготовки плазменной струей, формируемой из плазмообразующего газа, подаваемой на торец быстровращающейся заготовки с образованием частиц расплава, затвердевающих при полете в атмосфере холодного плазмообразуюшего газа в микрослитки. При плавлении литой заготовки в плазменную струю вводят водород, обеспечивают его ионизацию и взаимодействие ионов водорода с окислами на поверхности расплава и микрослитков, и кислородом плазмообразующего газа, с выводом образовавшейся в результате взаимодействия влаги из холодного плазмообразующего газа методом вымораживания. При этом водород вводят в плазменную струю в количестве, обеспечивающем поддержание остаточной концентрации водорода в холодном плазмообразующем газе на уровне, не превышающем 10 ppm. Обеспечивается повышение качества получаемых микрослитков за счет снижения в них содержания кислорода, повышаются механические свойства компактного материала изделий. 1 табл.
Основные результаты: Способ получения микрослитков из расплава методом центробежного распыления, включающий плавление литой заготовки плазменной струей, формируемой из плазмообразующего газа, подаваемой на торец быстровращающейся заготовки с образованием частиц расплава, затвердевающих при полете в атмосфере холодного плазмообразующего газа в микрослитки, отличающийся тем, что при плавлении литой заготовки в плазменную струю вводят водород, обеспечивают его ионизацию и взаимодействие ионов водорода с окислами на поверхности расплава и микрослитков и кислородом плазмообразующего газа с выводом образовавшейся в результате взаимодействия влаги из холодного плазмообразующего газа методом вымораживания, при этом водород вводят в плазменную струю в количестве, обеспечивающем поддержание остаточной концентрации водорода в холодном плазмообразующем газе на уровне, не превышающем 10 ppm.

Предполагаемое изобретение относится к металлургии, к области производства слитков, предназначенных для последующей переработки методом горячего изостатического прессования (ГИП).

Известен способ получения слитков методом плазменной плавки жаропрочных материалов с разливкой расплава в водоохлаждаемые изложницы.

Недостатком такого способа является наличие значительной химической неоднородности в слитках, полученных данным способом. Этот недостаток препятствует достижению высоких технологических свойств конечного продукта при последующей переработке. (Суперсплавы II: жаропрочные материалы для аэрокосмических и промышленных установок; под ред. Симса Ч.Т., Столоффа К.С, Хагеля У.К., пер. с англ. в 2-х книгах. Кн. 2, под ред. Шалина Р.Е.-М.: Металлургия, 1995, с.149-151).

Известен также способ получения микрослитков методом центробежного распыления, включающий плазменную плавку исходного материала, получение расплава, дозированную подачу его на быстровращающийся диск с распылением расплава на капли, последующим их охлаждением и затвердеванием в среде газа с образованием микрослитков (гранул). («Разработка установки для получения гранул центробежным распылением расплава» авт. Каринский В.Н. и др. Сб. статей «Металлургия гранул», под ред. А.Ф. Белова, вып.2, Москва, 1984 г., с.277-282).

Метод позволяет получать достаточную внутреннюю химическую однородность в микрослитках, однако на их поверхности образуется окисная пленка, не позволяющая при горячем изостатическом прессовании обеспечить полную консолидацию микрослитков в компактную заготовку (изделие).

Другим известным способом получения микрослитков является метод быстровращающейся цилиндрической заготовки, торец которой оплавляют плазменной струей. («Установка для получения порошков методом центробежного распыления вращающейся заготовки», авт. Кононов И.А. и др. в сб. «Металлургия гранул, под ред. Белова А.Ф., вып.2, Москва, 1984 г., с.242-250).

Данный способ производства микрослитков, принятый за прототип, имеет аналогичные недостатки, поскольку газ, используемый в процессе производства гранул в качестве плазмообразующей и охлаждающей среды (атмосферы), загрязняется водяными парами, кислородом воздуха и другими вредными примесями. Загрязнения газа могут быть обусловлены различными причинами. Наиболее характерными оказываются нарушения плотности в рубашках охлаждения технологической установки вследствие образования трещин, потери герметичности уплотнений, дефектов сварных швов и других причин. В конечном итоге микрослитки могут получаться окисленными.

Задачей предлагаемого изобретения является повышение качества получаемой продукции - микрослитков, за счет предотвращения их окисления от контакта с окислительными компонентами в плазмообразующем газе (кислорода и влаги).

Поставленная задача решается способом, который включает плавление литой заготовки плазменной струей, формируемой из плазмообразующего газа, подаваемой на торец быстровращающейся заготовки с образованием частиц расплава, затвердевающих затем в микрослитки при полете в атмосфере холодного плазмообразующего газа, при этом в плазменную струю вводят водород, обеспечивают его ионизацию и взаимодействие ионов водорода с окислами расплава, микрослитков и кислородом плазмообразующего газа, а образовавшуюся в результате взаимодействия влагу выводят затем из холодного плазмообразующего газа методом вымораживания, причем количество вводимого в плазменную струю водорода обеспечивает поддержание концентрации водорода в холодном плазмообразующем газе на уровне, не превышающем 10 ppm.

Предлагаемый способ получения из расплава микрослитков методом центробежного распыления за счет ввода в плазменную струю водорода, обеспечения его ионизации и взаимодействия ионов водорода с окислами расплава, микрослитков и кислородом плазмообразующего газа с выводом затем образовавшейся в результате взаимодействия влаги из холодного плазмообразующего газа методом вымораживания обеспечивает по сравнению с прототипом повышение качества получаемой продукции - микрослитков.

Это достигается восстановлением окислов на поверхности расплава и микрослитков при их взаимодействии с катионами водорода (Н+) в соответствии с реакцией: 2МеО+4Н+→2H2O+2Ме

Количество вводимого при этом водорода в плазменную струю должно дозироваться в соответствии со стехиометрическими долями компонент, вступающих в реакцию восстановления, с некоторым избытком, гарантирующим полноту взаимодействия, но не приводящем в то же время к насыщению водородом расплава. С этой целью устанавливают условие дозирования избытка водорода, которое не должно превышать 10 ppm в холодном плазмообразующем газе, в котором реакции взаимодействия уже завершены. При превышении указанного уровня остаточной концентрации водорода (10 ppm) может наступить процесс наводороживания расплава.

Принципиальная схема реализации предлагаемого способа изображена на рис.1.

Вращающаяся с угловой скоростью ω заготовка (2) поступает в камеру распыления (1) под струю плазмы от плазмотрона (3).

Расплав, образующийся на торце вращающейся заготовки (2), отбрасывается в виде отдельных капель с ее периферии центробежными силами. В процессе полета в камере распыления (1) капли расплава охлаждаются в газе, заполняющем камеру, кристаллизуются и в виде микрослитков поступают в приемный бункер (8).

Плазмообразующий газ поступает в камеру (1) перед началом процесса из ресивера газовой станции (7) через клапан 9. При работе плазмообразующий газ рециркулирует через камеру (1), холодильник (12) и плазмотрон (3) с помощью компрессора (6). Охлаждение газа и вымораживание влаги из него обеспечивает холодильник (12).

Состав рециркулирующего плазмообразующего газа контролирует и корректирует блок регулирования (5), который по сигналу его датчиков посредством автоматических клапанов (9) управляет подачей компонентов газовой смеси - порции водорода от источника (10) или порции свежего газа от ресивера газовой станции (7) в смеситель (4). Смеситель (4) обеспечивает подмешивание требуемой порции газовой компоненты в поток рециркулирующего газа и доведение до требуемого уровня его состава. Рост давления в камере (1) от ввода в нее дополнительных порций газа контролирует автоматический клапан (9), действующий по сигналу от манометра (11), выпуская соответствующую порцию плазмообразующего газа в атмосферу.

Предлагаемый способ получения микрослитков был опробован экспериментально на установке центробежного распыления типа УЦР. При этом на ней была распылена партия заготовок ⌀80 мм, длиной L=700 мм в количестве 60 шт. из никелевого сплава ЭП-741НП на частицы крупностью 140 мкм, при окружной скорости вращения периферии заготовки ~50 м/сек и при скорости плавления ~100 кг/час.

В процессе распыления в плазмообразующий газ состава 10% Ar+90% Не вводили водород (Н2) в количестве 0,3÷0,5 л/мин.

В результате в полученных микрослитках кислородосодержание было снижено с массовой доли 70 ppm, характерной при их получении на установке-прототипе (без ввода водорода), до ~20 ppm при вводе указанного выше количества Н2.

Это пониженное содержание кислорода в микрослитках обеспечило в дальнейшем, при формировании из них компактной заготовки методом горячего изостатического прессования (ГИП), бездефектное сращивание микрослитков друг с другом с образованием совершенной структуры металла компакта и его высокие механические свойства.

В таблице 1 приведены сравнительные характеристики механических свойств материалов, полученных по способу-прототипу и предлагаемому способу на сплаве ЭП741НП.

Таблица 1
Способ получения материала Механические свойства, не менее
Временное сопротивление разрыву, σв, МПа Предел текучести, σ0,2, МПа Относительное Ударная вязкость, KCU, Дж/см2
удлинение, δ, % сужение, ψ, %
Прототип 1275 883 15 17 39,4
Предлагаемый 1420 1000 15,2 18,3 40

Как следует из данных, приведенных в табл.1, предлагаемый способ получения микрослитков обеспечивает существенное (до 10÷15%) повышение механических свойств материала, получаемого методом ГИП из микрослитков, по сравнению со способом-прототипом.

Способ получения микрослитков из расплава методом центробежного распыления, включающий плавление литой заготовки плазменной струей, формируемой из плазмообразующего газа, подаваемой на торец быстровращающейся заготовки с образованием частиц расплава, затвердевающих при полете в атмосфере холодного плазмообразующего газа в микрослитки, отличающийся тем, что при плавлении литой заготовки в плазменную струю вводят водород, обеспечивают его ионизацию и взаимодействие ионов водорода с окислами на поверхности расплава и микрослитков и кислородом плазмообразующего газа с выводом образовавшейся в результате взаимодействия влаги из холодного плазмообразующего газа методом вымораживания, при этом водород вводят в плазменную струю в количестве, обеспечивающем поддержание остаточной концентрации водорода в холодном плазмообразующем газе на уровне, не превышающем 10 ppm.
СПОСОБ ПОЛУЧЕНИЯ МИКРОСЛИТКОВ ИЗ РАСПЛАВА МЕТОДОМ ЦЕНТРОБЕЖНОГО РАСПЫЛЕНИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 72 items.
10.05.2014
№216.012.bf67

Высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu пониженной плотности и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения. Сплав содержит, мас.%: цинк 6,0-8,0; магний 3,4-4,2; медь 0,8-1,3; скандий 0,07-0,15;...
Тип: Изобретение
Номер охранного документа: 0002514748
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c550

Способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов

Изобретение относится к области определения коррозионной стойкости металлов и может быть использовано для контроля подверженности к сульфидной коррозии деталей из порошковых никелевых сплавов газотурбинных двигателей. Способ включает нанесение агрессивного реагента на поверхность заготовки,...
Тип: Изобретение
Номер охранного документа: 0002516271
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c6ea

Жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него

Изобретение относится к области металлургии, в частности к жаропрочным порошковым сплавам на основе никеля, обладающим повышенным сопротивлением к сульфидной коррозии, и может быть использовано для изготовления деталей газотурбинных двигателей. Сплав содержит, мас.%: углерод 0,02-0,10, хром...
Тип: Изобретение
Номер охранного документа: 0002516681
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d76a

Способ изготовления поковок дисков из сплава алюминия титана на основе орто-фазы

Изобретение относится к обработке металлов и может быть использовано при изготовлении поковок дисков горячим деформированием слитков из сплава на основе алюминида титана, основанного на орторомбической фазе TiNbAl. Слиток подвергают осадке-протяжке на восьмигранник с суммарным уковом 1,6-1,7....
Тип: Изобретение
Номер охранного документа: 0002520924
Дата охранного документа: 27.06.2014
20.12.2014
№216.013.11f5

Гидравлический привод высокого давления

Изобретение относится к гидравлическим устройствам для приведения в действие обрабатывающих машин, в частности при обработке металлов давлением. Гидравлический привод содержит по меньшей мере два попеременно приводимых в действие генератора давления, каждый из которых состоит из приводного...
Тип: Изобретение
Номер охранного документа: 0002536020
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11f6

Установка для заполнения и герметизации капсул с металлическим порошком

Изобретение относится к порошковой металлургии, в частности к установкам для заполнения и герметизации капсул с металлическим порошком перед их компактированием. Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов состоит из загрузочного бункера,...
Тип: Изобретение
Номер охранного документа: 0002536021
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.125d

Способ получения диска газотурбинного двигателя

Изобретение относится к области порошковой металлургии жаропрочных никелевых сплавов и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению. Способ...
Тип: Изобретение
Номер охранного документа: 0002536124
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1713

Способ получения биметаллического диска газотурбинного двигателя

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей, работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся...
Тип: Изобретение
Номер охранного документа: 0002537335
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e2

Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах...
Тип: Изобретение
Номер охранного документа: 0002538054
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.200a

Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок и способ его термической обработки

Изобретение относится к металлургии, к коррозионно-стойким жаропрочным сплавам на основе никеля и может быть использовано для изготовления деталей горячего тракта газотурбинных установок, работающих в агрессивных средах. Жаропрочный сплав на основе никеля содержит, мас.%: углерод 0,05-0,09;...
Тип: Изобретение
Номер охранного документа: 0002539643
Дата охранного документа: 20.01.2015
Showing 21-30 of 57 items.
10.05.2014
№216.012.bf67

Высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu пониженной плотности и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к деформируемым алюминиевым сплавам, используемым в качестве высокопрочного конструкционного материала пониженной плотности разового применения. Сплав содержит, мас.%: цинк 6,0-8,0; магний 3,4-4,2; медь 0,8-1,3; скандий 0,07-0,15;...
Тип: Изобретение
Номер охранного документа: 0002514748
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c550

Способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов

Изобретение относится к области определения коррозионной стойкости металлов и может быть использовано для контроля подверженности к сульфидной коррозии деталей из порошковых никелевых сплавов газотурбинных двигателей. Способ включает нанесение агрессивного реагента на поверхность заготовки,...
Тип: Изобретение
Номер охранного документа: 0002516271
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c6ea

Жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него

Изобретение относится к области металлургии, в частности к жаропрочным порошковым сплавам на основе никеля, обладающим повышенным сопротивлением к сульфидной коррозии, и может быть использовано для изготовления деталей газотурбинных двигателей. Сплав содержит, мас.%: углерод 0,02-0,10, хром...
Тип: Изобретение
Номер охранного документа: 0002516681
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d76a

Способ изготовления поковок дисков из сплава алюминия титана на основе орто-фазы

Изобретение относится к обработке металлов и может быть использовано при изготовлении поковок дисков горячим деформированием слитков из сплава на основе алюминида титана, основанного на орторомбической фазе TiNbAl. Слиток подвергают осадке-протяжке на восьмигранник с суммарным уковом 1,6-1,7....
Тип: Изобретение
Номер охранного документа: 0002520924
Дата охранного документа: 27.06.2014
20.12.2014
№216.013.11f5

Гидравлический привод высокого давления

Изобретение относится к гидравлическим устройствам для приведения в действие обрабатывающих машин, в частности при обработке металлов давлением. Гидравлический привод содержит по меньшей мере два попеременно приводимых в действие генератора давления, каждый из которых состоит из приводного...
Тип: Изобретение
Номер охранного документа: 0002536020
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11f6

Установка для заполнения и герметизации капсул с металлическим порошком

Изобретение относится к порошковой металлургии, в частности к установкам для заполнения и герметизации капсул с металлическим порошком перед их компактированием. Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов состоит из загрузочного бункера,...
Тип: Изобретение
Номер охранного документа: 0002536021
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.125d

Способ получения диска газотурбинного двигателя

Изобретение относится к области порошковой металлургии жаропрочных никелевых сплавов и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению. Способ...
Тип: Изобретение
Номер охранного документа: 0002536124
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1713

Способ получения биметаллического диска газотурбинного двигателя

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей, работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся...
Тип: Изобретение
Номер охранного документа: 0002537335
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e2

Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах...
Тип: Изобретение
Номер охранного документа: 0002538054
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.200a

Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок и способ его термической обработки

Изобретение относится к металлургии, к коррозионно-стойким жаропрочным сплавам на основе никеля и может быть использовано для изготовления деталей горячего тракта газотурбинных установок, работающих в агрессивных средах. Жаропрочный сплав на основе никеля содержит, мас.%: углерод 0,05-0,09;...
Тип: Изобретение
Номер охранного документа: 0002539643
Дата охранного документа: 20.01.2015
+ добавить свой РИД