×
20.12.2014
216.013.1236

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОЙ ФОКУСИРОВКИ КАМЕРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптико-электронным приборам, предназначенным для осуществления автоматической фокусировки объективов. Способ заключается в вычислении значения параметра резкости, при котором для каждого пикселя изображения выполняется преобразование RGB сигналов основных цветов в равноконтрастное пространство. Для этого выполняется сканирование изображения с помощью скользящего окна с размерами 3×3 пикселя. На каждой итерации в окне выполняется алгоритм распознавания изображения мелкой структуры. Для распознавания применяются бинарные изображения мелких структур, по которым определяются пространственные координаты пикселей объекта и фона. Анализ производится по всем типам мелких структур, начиная с первой (точечный объект). Вычисляются средние значения цветовых координат фона и объекта, проверяются условия цветового различия между соседними пикселями фона и между соседними пикселями объекта, заметными для глаза. Вычисляется контраст объекта относительно фона, при котором мелкие детали различаются глазом, при этом точечный объект считается распознанным и фиксируются его пространственные координаты центра. Параметр резкости изображения оценивается подсчетом общего количества распознанных блоков в процентном отношении к общему числу пикселей изображения. Технический результат - повышение точности фокусировки при съемке малоразмерных объектов с низким контрастом. 3 ил.
Основные результаты: Способ автоматической пассивной фокусировки камеры на малоразмерных объектах изображения с низким контрастом, включающий вычисление множества различных значений параметров резкости, каждое из которых соответствует различному положению фокусирующего устройства, при помощи проведения дискретного вейвлет-преобразования над множеством изображений, захваченных при различных положениях фокусирующего устройства и приведенных из RGB представления в яркостное представление; перемещение фокусирующего устройства в положение, соответствующее максимальному значению параметра резкости, определяемому путем сравнений множества вычисленных различных значений параметров резкости, отличающийся тем, что вычисление значения параметра резкости производится следующим образом: для каждого пикселя изображения выполняется преобразование RGB сигналов основных цветов в равноконтрастное пространство; вычисляется оценка цветовых различий мелких деталей, заметных для глаза, относительно цветовых координат пикселей окружающего фона в нормированной равноконтрастной системе координат; выполняется оценка контраста и распознавания мелких деталей, с этой целью выполняется сканирование изображения с помощью скользящего окна с размерами 3×3 пикселя, на каждой итерации, в окне выполняется алгоритм распознавания изображения мелкой структуры, с этой целью в процессе анализа распознается объект - является ли он точечным объектом или фрагментом тонкой линии, для распознавания применяются бинарные изображения мелких структур, по которым определяются пространственные координаты пикселей объекта и фона, анализ производится по всем типам мелких структур, начиная с первой (точечный объект), вычисляются средние значения цветовых координат фона и объекта, проверяются условия цветового различия между соседними пикселями фона и между соседними пикселями объекта, заметными для глаза, вычисляется контраст объекта относительно фона, при котором мелкие детали различаются глазом, и при этом точечный объект считается распознанным и фиксируются его пространственные координаты центра, выполняется перемещение окна на три пикселя и анализируются следующие блоки изображения; оценивается параметр резкости изображения подсчетом общего количества распознанных блоков в процентном отношении к общему числу пикселей изображения.

Изобретение относится к оптико-электронным приборам, предназначенным для осуществления автоматической фокусировки объективов и может быть использовано в кино-, фото- и телевизионных камерах и направлено на повышение точности фокусировки, преимущественно в таких случаях, как съемка малоразмерных объектов с низким контрастом.

Известны различные способы автоматической фокусировки камеры, как активные, включающие в себя излучающие дальномеры (пат. US №4367027 от 12.03.1980), так и пассивные. Пассивная автоматическая фокусировка бывает двух типов: фазовая (пат. US №5589909 от 31.12.1996) и контрастная (пат. US №5170202 от 08.12.1992).

Наиболее близким к предлагаемому изобретению является способ автоматической фокусировки, включающий в себя:

- вычисление множества различных значений параметров резкости, каждое из которых соответствует различному положению фокусирующего устройства, при помощи проведения дискретного вейвлет-преобразования над множеством изображений, захваченных при различных положениях фокусирующего устройства и приведенных из RGB представления в яркостное представление;

- перемещение фокусирующего устройства в положение, соответствующее максимальному значению параметра резкости, определяемому путем сравнений множества вычисленных различных значений параметров резкости (пат. РФ №2389050 от 10.05.2010).

Однако недостатком этого способа является сложность выполнения автоматической фокусировки камеры на малоразмерных объектах с низкой контрастностью.

Технической задачей, на решение которой направлено изобретение, является повышение точности фокусировки камеры на малоразмерных объектах с низким контрастом.

Для решения указанной технической задачи в известном способе автоматической фокусировки, включающем:

- вычисление множества различных значений параметров резкости, каждое из которых соответствует различному положению фокусирующего устройства, при помощи проведения дискретного вейвлет-преобразования над множеством изображений, захваченных при различных положениях фокусирующего устройства и приведенных из RGB представления в яркостное представление;

- перемещение фокусирующего устройства в положение, соответствующее максимальному значению параметра резкости, определяемому путем сравнений множества вычисленных различных значений параметров резкости, согласно изобретению предложен следующий алгоритм вычисления значения параметра резкости:

- для каждого пикселя изображения выполняется преобразование RGB сигналов основных цветов в равноконтрастное пространство;

- вычисляется оценка цветовых различий мелких деталей, заметных для глаза, относительно цветовых координат пикселей окружающего фона в нормированной равноконтрастной системе координат;

- выполняется оценка контраста и распознавания мелких деталей, с этой целью выполняется сканирование изображения с помощью скользящего окна с размерами 3×3 пикселя, на каждой итерации, в окне выполняется алгоритм распознавания изображения мелкой структуры, с этой целью в процессе анализа распознается объект - является ли он точечным объектом или фрагментом тонкой линии, для распознавания применяются бинарные изображения мелких структур, по которым определяются пространственные координаты пикселей объекта и фона, анализ производится по всем типам мелких структур, начиная с первой (точечный объект), вычисляются средние значения цветовых координат фона и объекта, проверяются условия цветового различия между соседними пикселями фона и между соседними пикселями объекта, заметными для глаза, вычисляется контраст объекта относительно фона, при котором мелкие детали различаются глазом, и при этом точечный объект считается распознанным и фиксируются его пространственные координаты центра, выполняется перемещение окна на три пикселя и анализируются следующие блоки изображения;

- оценивается параметр резкости изображения подсчетом общего количества распознанных блоков в процентном отношении к общему числу пикселей изображения.

На фиг.1 приведена блок-схема устройства, в котором может быть реализован заявляемый способ. Устройство содержит следующие блоки, где 1 - сенсор захвата изображения, связанный с блоком преобразования изображения из RGB представления в равноконтрастное представление; 2 - блок преобразования изображения из RGB представления в равноконтрастное представление, связанный с сенсором и блоком вычисления параметра резкости; 3 - блок вычисления параметра резкости, связанный с блоком изображения из RGB представления в равноконтрастное представление и с блоком анализа параметра резкости; 4 - блок анализа параметра резкости, связанный с блоком вычисления параметра резкости и с механизмом управления автофокусировкой; 5 - механизм управления автофокусировкой, связанный с блоком анализа параметра резкости и с сенсором для захвата изображения.

Пример реализации способа.

1. При начальном значении расстояния, на которое производится наводка на резкость (Li), выполняется попиксельное преобразование RGB сигналов основных цветов в равноконтрастную систему координат. Используется равноконтрастная система координат W*U*V*:

W*=25 Y1/3-17, U*=13W*(u-uo), V*=13W*(ν-νo),

где W* - светлота (индекс яркости); U* и V* - координаты цветности (индексы цветности); u и ν - координаты цветности диаграммы Мак-Адама; uo и νo - координаты цветности опорного белого uo=0,201, νo=0,307.

2. Выполняется распознавание малоразмерных объектов изображения с помощью скользящего окна с размерами 3×3 пикселя.

Устанавливается счетчик распознанных блоков в значение NR=0.

На каждой итерации, в окне выполняется распознавание по следующему алгоритму.

а) Вычисляется контраст блока

где , и - максимальные и минимальные значения цветовых координат по индексам яркости и цветности в скользящем окне изображения 3×3 пикселя. Значения , , - пороговые значения зрительного контраста мелких деталей по индексам яркости и цветности, полученные экспериментальным путем, и определены числом минимальных цветовых порогов зрения (МЦП): и .

б) Проверяется условие: если ΔK<2 принимается решение о том, что изменение контраста в блоке незаметно для глаза, далее блок исключается из анализа и окно перемещается на один пиксель; иначе полагается, что в окне присутствует различимый для глаза элемент изображения, который может быть: точечным объектом; фрагментом тонкой линии; фрагментом текстуры; фрагментом контурного перепада.

Для распознавания объекта применяются бинарные изображения (эталоны) мелких деталей. На фиг.2 представлены эталоны точечного объекта и фрагментов тонких линий с вертикальной, горизонтальной и наклонной ориентацией, а также фрагменты их окончаний.

Распознавание начинается с первой структуры и устанавливается счетчик эталона Kэ в значение 0. Зная пространственные координаты объекта и фона эталонного изображения, в текущем окне (3×3), вычисляется средние значения цветовых координат объекта и фона . Средние значения для индекса ярости:

и ,

где n и m - пространственные координаты объекта и фона эталона в окне (3×3) анализируемого блока изображения; No - число пикселей объекта; Mb - число пикселей фона. Аналогично вычисляются средние значения по индексам цветности.

в) Вычисляется цветовой контраст ΔKo(n) каждого пикселя объекта с пространственной координатой n, относительно среднего значения:

и цветовой контраст ΔKb(m) каждого пикселя фона с пространственной координатой m:

г) Проверяются условия:

и

Выполнение этих условий означает, что в среднем цветовые различия между пикселями фона и между пикселями объекта незаметны для глаза и, принимается решение о том, что объект распознан. Следовательно, инкрементируется счетчик распознанных блоков: NR=NR+1.

д) Фиксируются пространственные координаты его блока (i, j) и перемещается окно на три пикселя с целью анализа следующего блока изображения. Если условия (2) не выполняются, то осуществляется переход к распознаванию следующей структуры (фиг.2) и устанавливается счетчик эталона Kэ в значение Kэ+1. Если после анализа всех деталей Kэ=0…12, условия (2) так и не выполнены, считается, что в текущем окне объект не распознан.

е) Выполняется смещение окна на один элемент и осуществляется переход к этапу 2.

3. Подсчитывается количество распознанных блоков и вычисляется среднее значение для заданного расстояния, на которое производится наводка на резкость Li

,

где Nx·Ny - формат изображения (общее количество пикселей).

4. Изменяется расстояние, на которое производится наводка на резкость Li, на Li+1=Li±ΔL, где ΔL - шаг расстояния, на которое производится наводка на резкость, и повторяются этапы 2-3.

5. Вычисляется функция , находится значение максимума , определяется значение i и, следовательно, Li - требуемое расстояние, на которое производится наводка на резкость.

На фиг.3 приведена зависимость параметра резкости от перемещения фокусирующего устройства при поиске максимального значения параметра резкости при съемке малоразмерного изображения объекта с низким контрастом. Локальный максимум на фиг.3 соответствует фокусировке на объекте.

Таким образом, заявленный способ позволяет повысить точность фокусировки камеры на малоразмерных объектах с низким контрастом.

Способ автоматической пассивной фокусировки камеры на малоразмерных объектах изображения с низким контрастом, включающий вычисление множества различных значений параметров резкости, каждое из которых соответствует различному положению фокусирующего устройства, при помощи проведения дискретного вейвлет-преобразования над множеством изображений, захваченных при различных положениях фокусирующего устройства и приведенных из RGB представления в яркостное представление; перемещение фокусирующего устройства в положение, соответствующее максимальному значению параметра резкости, определяемому путем сравнений множества вычисленных различных значений параметров резкости, отличающийся тем, что вычисление значения параметра резкости производится следующим образом: для каждого пикселя изображения выполняется преобразование RGB сигналов основных цветов в равноконтрастное пространство; вычисляется оценка цветовых различий мелких деталей, заметных для глаза, относительно цветовых координат пикселей окружающего фона в нормированной равноконтрастной системе координат; выполняется оценка контраста и распознавания мелких деталей, с этой целью выполняется сканирование изображения с помощью скользящего окна с размерами 3×3 пикселя, на каждой итерации, в окне выполняется алгоритм распознавания изображения мелкой структуры, с этой целью в процессе анализа распознается объект - является ли он точечным объектом или фрагментом тонкой линии, для распознавания применяются бинарные изображения мелких структур, по которым определяются пространственные координаты пикселей объекта и фона, анализ производится по всем типам мелких структур, начиная с первой (точечный объект), вычисляются средние значения цветовых координат фона и объекта, проверяются условия цветового различия между соседними пикселями фона и между соседними пикселями объекта, заметными для глаза, вычисляется контраст объекта относительно фона, при котором мелкие детали различаются глазом, и при этом точечный объект считается распознанным и фиксируются его пространственные координаты центра, выполняется перемещение окна на три пикселя и анализируются следующие блоки изображения; оценивается параметр резкости изображения подсчетом общего количества распознанных блоков в процентном отношении к общему числу пикселей изображения.
СПОСОБ АВТОМАТИЧЕСКОЙ ФОКУСИРОВКИ КАМЕРЫ
СПОСОБ АВТОМАТИЧЕСКОЙ ФОКУСИРОВКИ КАМЕРЫ
СПОСОБ АВТОМАТИЧЕСКОЙ ФОКУСИРОВКИ КАМЕРЫ
Источник поступления информации: Роспатент

Showing 121-129 of 129 items.
13.01.2017
№217.015.8248

Генератор талой питьевой воды

Изобретение относится к устройствам для доочистки водопроводной, артезианской, колодезной и другой условно питьевой воды. Устройство включает зону замораживания воды, зону вытеснения примесей из фронта льда и концентрации примесей в виде рассола, зону перехода воды из твердого состояния в...
Тип: Изобретение
Номер охранного документа: 0002601764
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83dc

Аппарат для проверки стойкости антикоррозионных покрытий на истирание

Изобретение относится к области машиностроения и может быть использовано для проверки стойкости антикоррозионных покрытий на истирание, например для аспирационных трубопроводов. Аппарат содержит корпус, привод, нагрузочное устройство, испытуемые образцы и истирающий элемент, барабан. В качестве...
Тип: Изобретение
Номер охранного документа: 0002601357
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8b66

Способ восстановления деталей электрошлаковой наплавкой

Изобретение может быть использовано для восстановления деталей электрошлаковой наплавкой. После закрепления детали и кокиля расплавляют расходуемый электрод в виде пакета, собранного и сваренного из нескольких металлических прутков, выровненных по торцу. Используют прутки, выполненные из...
Тип: Изобретение
Номер охранного документа: 0002604165
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.913c

Стенд для исследования статического сопротивления выталкиванию забойки из взрывной скважины

Изобретение относится к лабораторному оборудованию и может быть использовано для моделирования процессов, происходящих во взрывной полости скважин при ведении взрывных работ. Сущность: стенд выполнен в форме С-образной рамы (1) с опорной площадкой (5), на которую устанавливается имитатор (6)...
Тип: Изобретение
Номер охранного документа: 0002605637
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.91cf

Способ изготовления подшипника скольжения

Изобретение относится к технологии изготовления слоистых изделий намоткой и может быть использовано для изготовления подшипника скольжения. Технической задачей, на решение которой направлено изобретение, является повышение долговечности подшипника скольжения. Согласно способу изготовления...
Тип: Изобретение
Номер охранного документа: 0002605713
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a6a5

Защитная композиция для деревянных строительных конструкций

Изобретение относится к области строительства, для антикоррозийной и гидроизоляционной защиты деревянных строительных конструкций, в частности складов минеральных удобрений. Защитная композиция для деревянных строительных конструкций включает полимерное связующее и наполнитель, при этом в...
Тип: Изобретение
Номер охранного документа: 0002608090
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.a812

Способ автоматизированного составления протокола дорожно-транспортного происшествия

Изобретение относится к системам регулирования движения дорожного транспорта, а именно к способам автоматизированного составления протокола дорожно-транспортного происшествия. Способ включает фотосъемку и передачу на компьютер изображения дорожно-транспортного происшествия, обработку...
Тип: Изобретение
Номер охранного документа: 0002611467
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.af1a

Автоматизированная система контроля качества нефти

Изобретение относится к средствам автоматизации процессов транспортирования «партий нефти» различного качества по одному трубопроводу с контролем в смеси нефти показателей ее качества. Отличительная особенность автоматизированной системы контроля качества нефти изобретения заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002610902
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.b65c

Автоматизированный комплекс для составления протокола дорожно-транспортного происшествия

Изобретение относится к системам регулирования движения дорожного транспорта. Автоматизированный комплекс составления протокола дорожно-транспортного происшествия включает средства фотосъемки и передачи на компьютер изображения дорожно-транспортного происшествия, устройство обработки информации...
Тип: Изобретение
Номер охранного документа: 0002614455
Дата охранного документа: 28.03.2017
Showing 161-170 of 191 items.
10.04.2016
№216.015.2f79

Способ поиска неисправностей динамического блока в непрерывной системе на основе функции чувствительности

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат - уменьшение вычислительных затрат, связанных с реализацией моделей с пробными отклонениями параметров. Он достигается тем, что предварительно регистрируют реакцию...
Тип: Изобретение
Номер охранного документа: 0002580405
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31de

Способ склеивания рулонных материалов

Изобретение относится к способу склеивания рулонных материалов и может быть использовано при ремонте кровель, в частности с использованием рубероида. Технический результат изобретения - повышение долговечности кровельного покрытия. Способ склеивания рулонных материалов включает раскатывание...
Тип: Изобретение
Номер охранного документа: 0002580863
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.346a

Гайка

Изобретение относится к машиностроению и может быть использовано в различных узлах резьбового крепления узлом деталей машин и механизмов. Технической задачей, на решение которой направлено изобретение, является повышение надежности и долговечности гайки. Техническая задача совпадает с...
Тип: Изобретение
Номер охранного документа: 0002581815
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.346f

Способ парофазного определения массовой концентрации четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях методом газовой хроматографии

Изобретение относится к области аналитической химии и может быть использовано для определения содержания ЛХС (летучих хлорорганических соединений): четыреххлористого углерода, метиленхлорида, хлороформа, 1,2-дихлорэтана, 1.1.2-трихлорэтана в донных отложениях. Способ определения содержания ЛХС...
Тип: Изобретение
Номер охранного документа: 0002581745
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3770

Гайка

Изобретение относится к машиностроению и может быть использовано в различных узлах резьбового крепления узлом деталей машин и механизмов. Технической задачей, на решение которой направлено изобретение, является повышение надежности и долговечности гайки. Техническая задача совпадает с...
Тип: Изобретение
Номер охранного документа: 0002581977
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3e25

Способ измерения магнитного поля

Изобретение относится к измерительной технике, представляет собой способ измерения магнитного поля и может применяться в магнитных отклоняющих системах. При реализации способа магнитоодноосную оптически прозрачную пластину слабого ферромагнетика, размещенную между связанными с источником...
Тип: Изобретение
Номер охранного документа: 0002584720
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f2a

Мобильный комплекс по вывозке снега

Изобретение относится к коммунальному хозяйству и может быть использовано для уборки и перевозки снега. Мобильный комплекс по вывозке снега содержит автомобиль на базовом шасси, снабженном бункером с загрузочным окном, внутри которого установлено устройство переработки снега. Устройство...
Тип: Изобретение
Номер охранного документа: 0002584615
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.4107

Заделывающий рабочий орган лесопосадочной машины

Изобретение относится к лесному хозяйству, а именно к лесопосадочным машинам для высадки сеянцев. Заделывающий рабочий орган содержит раму посадочной секции. На раме посадочной секции для прижима корневой системы установлены под углом 35 градусов два гидравлических цилиндра. Нижние части...
Тип: Изобретение
Номер охранного документа: 0002584616
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41a7

Подшипник скольжения

Изобретение относится к машиностроению и может быть использовано в конструкциях подшипников скольжения. Подшипник скольжения в виде корпуса из намотанной тканной ленты, пропитанной полимерным связующим с наполнителями и с температурной обработкой. Между слоями тканной ленты расположена...
Тип: Изобретение
Номер охранного документа: 0002584072
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.46ba

Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов. Технический результат - уменьшение вычислительных затрат, связанных с реализацией отклонений сигналов моделей со смененной позицией входного сигнала. Согласно способу предварительно...
Тип: Изобретение
Номер охранного документа: 0002586859
Дата охранного документа: 10.06.2016
+ добавить свой РИД