×
20.12.2014
216.013.11f6

Результат интеллектуальной деятельности: УСТАНОВКА ДЛЯ ЗАПОЛНЕНИЯ И ГЕРМЕТИЗАЦИИ КАПСУЛ С МЕТАЛЛИЧЕСКИМ ПОРОШКОМ

Вид РИД

Изобретение

№ охранного документа
0002536021
Дата охранного документа
20.12.2014
Аннотация: Изобретение относится к порошковой металлургии, в частности к установкам для заполнения и герметизации капсул с металлическим порошком перед их компактированием. Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов состоит из загрузочного бункера, вакуумной камеры, внутри которой размещены электронагреватели и питатель, и форвакуумной камеры, внутри которой размещены механизм для вибрации и вибростол для капсулы. Питатель снабжен дефлекторами в виде плоских пластин из газопоглощающего металла, установленных под углом наклона к горизонтали 17-18°, причем пластины выполнены с возможностью вибрации и нагрева независимым источником нагрева. Осуществляется равномерный и полный нагрев гранул до требуемой температуры, что способствует более полному удалению газов с их поверхности. Улучшается качество изделий за счет повышения эффективности процесса дегазации. 1 ил., 1 табл.
Основные результаты: Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов, состоящая из загрузочного бункера, вакуумной камеры, внутри которой размещены электронагреватели и питатель, и форвакуумной камеры, внутри которой размещены механизм для вибрации и вибростол для капсулы, отличающаяся тем, что питатель снабжен дефлекторами в виде плоских пластин из газопоглощающего металла, установленных под углом наклона к горизонтали 17-18°, причем пластины выполнены с возможностью вибрации и нагрева независимым источником нагрева.

Изобретение относится к порошковой металлургии, в частности к установкам для заполнения и герметизации капсул с металлическим порошком перед их компактированием.

Целью изобретения является улучшение качества изделий за счет повышения эффективности процесса дегазации.

Существует устройство для дегазации и герметизации металлического порошка (авт. свидетельство №890641 от 31.03.89 г.). Оно состоит из вакуумной печи, питателя, установленного внутри печи, бункера, связанного с питателем посредством трубки ввода и вакуумного крана, загрузочного приспособления с капсулой для загрузки порошка, электронно-лучевой печи и манипулятора. Недостатками способа являются неравномерный нагрев порошка, затрудненное и неполное удаление десорбируемых газов из неподвижного слоя порошка с помощью полых металлических патрубков из-за отсутствия вибрационного воздействия на порошок.

Существует также установка для заполнения и герметизации капсул с металлическим порошком (авт. свидетельство №788539 от 31.03.89 г.). Она снабжена обогреваемым желобом из газопоглощающего материала, в частности титана (что исключает возможность обратного взаимодействия десорбируемых газов с поверхностью гранул), выполненным с углом наклона зигзагообразных участков 18-33° к горизонтали и установленным после питателя по ходу движения порошка. Время прохождения порошка в таком желобе составляет несколько секунд, толщина слоя достигает 6,5 мм, что не обеспечивает нагрев порошка до требуемой температуры и, следовательно, полноту дегазации. Более того, закрытый желоб не позволяет вакуумным насосом полностью удалять газы, выделяющиеся в процессе десорбции. Этот способ был выбран в качестве прототипа.

Задачей настоящего изобретения является повышение качества термической дегазации жаропрочных никелевых сплавов и за счет этого стабилизация жаропрочных свойств дисков из таких гранул.

Предлагается конструкция установки, которая обеспечивает высокую степень дегазации за счет того, что с поверхности гранул, находящихся в высоком вакууме 5·10-5 мм рт.ст. и нагретых до температуры не менее 450°C, происходит их активная десорбция и удаление вакуумными насосами. Использованием в качестве нагревающей поверхности дефлекторов из газопоглощающего материала, их вибрации и нагрева до температуры 450-500°C, обеспечивается слой гранул в 0,5-1,0 мм при угле наклона дефлекторов в 17-18°C, т.е. близком к углу естественного откоса гранул. Тем самым осуществляется равномерный и полный нагрев гранул до требуемой температуры, что способствует более полному удалению газов с их поверхности. Высокое качество дегазации подтверждается отсутствием наследственных границ гранул в структуре компактного материала и результатами испытаний заготовок дисков при температуре 650°C (повышение жаропрочности на 2÷3 кг/мм2).

Технический результат: достижение высокой степени десорбции газовых примесей с поверхности гранул и за счет этого консолидация гранул в компакт со 100% плотностью, возможность изготовления крупногабаритных дисков (с диаметром до 1000 мм) за счет дегазации и заполнения капсул больших размеров.

Принципиальная схема установки дегазации представлена на чертеже.

Установка содержит загрузочный бункер 1, снабженный механическим затвором 2 и вакуумным затвором 3. Загрузочный бункер 1 через стыковочное устройство 4 присоединен к вакуумной камере 5, внутри которой размещен зажимной механизм 6 для капсулы со съемным торцевым элементом 7. Зажимной механизм 6 установлен на подставке 8, а электронагреватели 9 и питатель 10 - в камере 5, причем питатель 10 выполнен разъемным и его примыкающая к капсуле часть 11 смонтирована с возможностью поворота вокруг вертикальной оси при помощи механизма 12. Установка содержит также форвакуумную камеру 13 с механизмом 14 вибрации и вибростолом 15, который установлен по линии разъема камер и снабжен уплотняющей эластичной перегородкой 16, защищенной от нагревателей экранами 17. Опоры 18 вибростола установлены на фундаменте вне форвакуумной камеры 13 и герметично соединены с неэластичными элементами 19, а приводной вал 20 механизма 14 вибрации выведен из форвакуумной камеры 13 через вакуумные уплотнения 21 и присоединен к двигателю 22 с регулируемым числом оборотов.

Для выполнения операций заполнения и герметизации вакуумная камера снабжена смотровым окном 23, датчиком 24 контроля уровня порошка в воронке и электронной сварочной пушкой 25, соединенной с вакуумной камерой посредством герметичного затвора 26. Загрузочный бункер, электронная сварная пушка, вакуумная и форвакуумная камеры выполнены соответственно с патрубками 27, 28, 29 и 30 для присоединения к вакуумной системе установки.

Для интенсификации процесса дегазации питатель 10 снабжен размещенными в камере 5 дефлекторами 31, представляющими собой наклонные поверхности, выполненные из газопоглощающего металла, например, титана. При этом угол наклона дефлекторов к горизонтали составляет немного меньше угла естественного откоса никелевых гранул, т.е. 17-18°.

К дефлекторам подведен вибратор 34, они также подсоединены к самостоятельному источнику 32 нагрева токоподводами 33.

Установка работает следующим образом.

Капсулу закрепляют в зажимном механизме 6 и устанавливают на подставке вибростола 15, после чего устанавливают над капсулой поворотную часть 11 питателя с помощью механизма 12 и к установке через стыковочное устройство 4 присоединяют бункер 1 с металлическим порошком. После выполнения указанных подготовительных операций производят вакуумирование объемов установки с помощью вакуумной системы (не показана на чертеже) через патрубки 27, 28, 29, 30. При достижении заданного разрежения включают электронагреватели 9 и производят дегазацию пустой капсулы с целью удаления адсорбированных газов и влаги с ее внешних поверхностей и внутренней полости. Рабочее давление в камере достигается и поддерживается на уровне 5·10-5 мм рт.ст., давление в капсуле составляет такую же величину.

После проведения операции дегазации капсулы включают источник 32 нагрева и вибратор 34, одновременно разогревают дефлекторы 31. При достижении 450-500°C на дефлекторы 31 подают через питатель 10 металлический порошок, который, контактируя с поверхностью дефлекторов, нагревается до той же температуры. Нагрев происходит быстрее, чем по способу-прототипу, за счет большей площади контакта гранулы с поверхностью дефлекторов и регламентированного времени нахождения на них гранул.

Через стыковочное устройство 4 после открытия механического затвора 2 бункера 1 подают металлический порошок по питателю и дефлекторам в камеру. Контактируя с поверхностью дефлекторов, порошок нагревается до температуры 450-500°C благодаря прохождению его по поверхности дефлекторов за счет увеличения времени нахождения гранул в зоне нагрева. Выделяющиеся газы удаляются вакуумными насосами и частично поглощаются дефлекторами, так как они выполнены из газопоглощающего материала. Контроль заполнения капсулы порошком осуществляют с помощью датчика 24 и визуально через смотровое окно 23. После заполнения капсулы порошком отключают нагреватель 9 и источник нагрева 32, отводят в сторону поворотную часть 11 питателя и производят герметизацию загрузочного отверстия капсулы с помощью электронной пушки 25, наблюдая за этим процессом через смотровое окно 23. Заканчивают цикл работы на установке охлаждением капсулы и выгрузкой ее из установки. Затем цикл работы повторяется.

Воздействие вибратора 34 позволило установить угол дефлекторов немного меньшим, чем угол естественного откоса гранул, т.е. ≤18°, более того, он может быть изменен, за счет чего реализуется контроль над скоростью течения порошка, что повышает эффективность дегазации. Также конструкция камеры с дефлекторами позволяет откачивать десорбированные с поверхности частиц порошка газы вакуумными насосами. Все это в целом снижает содержание газовых примесей в гранулах никелевых сплавов.

Для определения эффективности предлагаемой схемы было проведена оценка остаточного содержания газов в гранулах из сплава ЭП741НП при ее использовании. Результаты сведены в таблицу 1. Для сравнения в ней также приведены результаты дегазации по способу-прототипу.

Из таблицы видно, что предлагаемый метод имеет преимущество перед прототипом при угле наклона дефлекторов, близком к углу естественного откоса гранул, т.е. 18°.

Конструкция установки позволяет снизить остаточное содержание газов на поверхности порошков никелевых сплавов в 1,5-2 раза по сравнению с содержанием газов, полученным при использовании установки-прототипа.

Таблица 1
Сравнение методов дегазации
Тип установки дегазации Угол наклона желоба/дефлекторов, град Толщина движущегося слоя порошка, мм Остаточное содержание газов в порошке после дегазации, мас.%
18 6,5 0,010
20 5,0 0,009
Известная 25 3,5 0,007
30 2,0 0,0065
33 0,3 0,006
15 2,0 0,0065
Предлагаемая 16 1,5 0,006
17 1,0 0,005
18 0,5 0,004

Установка для заполнения и герметизации капсул с гранулами из жаропрочных никелевых сплавов, состоящая из загрузочного бункера, вакуумной камеры, внутри которой размещены электронагреватели и питатель, и форвакуумной камеры, внутри которой размещены механизм для вибрации и вибростол для капсулы, отличающаяся тем, что питатель снабжен дефлекторами в виде плоских пластин из газопоглощающего металла, установленных под углом наклона к горизонтали 17-18°, причем пластины выполнены с возможностью вибрации и нагрева независимым источником нагрева.
УСТАНОВКА ДЛЯ ЗАПОЛНЕНИЯ И ГЕРМЕТИЗАЦИИ КАПСУЛ С МЕТАЛЛИЧЕСКИМ ПОРОШКОМ
Источник поступления информации: Роспатент

Showing 61-65 of 65 items.
29.06.2019
№219.017.a0f9

Сверхпрочный сплав на основе алюминия

Предлагается сплав на основе алюминия, предназначенный для изготовления деформированных полуфабрикатов в виде листов, штамповок, прутков, труб или в другом виде для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных...
Тип: Изобретение
Номер охранного документа: 0002449037
Дата охранного документа: 27.04.2012
06.07.2019
№219.017.a6d7

Высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu и изделие, выполненное из него

Изобретение относится к области металлургии алюминиевых сплавов, в частности к деформируемым сплавам на основе алюминия, используемым в качестве высокопрочного конструкционного материала в изделиях разового применения. Высокопрочный деформируемый сплав на основе алюминия системы Al-Zn-Mg-Cu...
Тип: Изобретение
Номер охранного документа: 0002693710
Дата охранного документа: 04.07.2019
31.05.2020
№220.018.2306

Центробежный струйно-плазменный способ получения порошков металлов и сплавов

Изобретение относится к металлургии, к области производства сферических порошков из металлов и сплавов, предназначенных для дальнейшей переработки методами аддитивных технологий или горячего изостатического прессования в готовые изделия. Центробежный струйно-плазменный способ получения порошков...
Тип: Изобретение
Номер охранного документа: 0002722317
Дата охранного документа: 29.05.2020
12.04.2023
№223.018.43cd

Деформируемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде прессованных прутков, в качестве конструкционного материала для токопроводящих и теплопроводящих...
Тип: Изобретение
Номер охранного документа: 0002793664
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4e9e

Теплоизолирующий колпак печи газостата

Предлагаемое изобретение относится к области порошковой металлургии, в частности к оборудованию для изостатического прессования порошковых материалов, заключенных газостат. Теплоизолирующий колпак печи газостата содержит корпус, выполненный в виде муфеля и внешней оболочки с боковыми и верхними...
Тип: Изобретение
Номер охранного документа: 0002793353
Дата охранного документа: 31.03.2023
Showing 51-59 of 59 items.
18.05.2019
№219.017.561e

Способ определения наличия и размера инородных включений в массе металлических гранул

Использование: для определения наличия и размера инородных включений в массе металлических гранул. Сущность: заключается в том, что определяют наличие и размер инородных включений в массе металлических гранул, размещая на подложке монослой гранул, после чего осуществляют освещение подложки...
Тип: Изобретение
Номер охранного документа: 0002347209
Дата охранного документа: 20.02.2009
18.05.2019
№219.017.59fe

Способ термообработки деталей из жаропрочных никелевых сплавов для повышения сопротивления малоцикловой усталости

Изобретение относится к области металлургии, в частности к термообработке жаропрочных никелевых сплавов, и может быть использовано в производстве деталей газотурбинных двигателей (дисков, валов и др.), работающих в условиях жесткого циклического нагружения. Способ термообработки деталей из...
Тип: Изобретение
Номер охранного документа: 0002455383
Дата охранного документа: 10.07.2012
29.05.2019
№219.017.6823

Способ получения изделия из сплава типа вв751п с высокой прочностью и жаропрочностью

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных сплавов на основе никеля, предназначенных для тяжелонагруженных деталей, работающих при повышенных температурах в газотурбинных двигателях. Предложен способ получения изделия из жаропрочных никелевых...
Тип: Изобретение
Номер охранного документа: 0002453398
Дата охранного документа: 20.06.2012
19.06.2019
№219.017.875f

Жаропрочный порошковый никелевый сплав

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. Может использоваться в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Жаропрочный порошковый никелевый сплав, содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002371495
Дата охранного документа: 27.10.2009
19.06.2019
№219.017.89d7

Способ получения изделий из сложнолегированных жаропрочных никелевых сплавов

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Предложен способ получения изделия из...
Тип: Изобретение
Номер охранного документа: 0002457924
Дата охранного документа: 10.08.2012
29.06.2019
№219.017.9fe8

Способ получения переменной структуры по сечению порошковой заготовки

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в производстве тяжелонагруженных деталей, работающих в условиях градиента температуры и имеющих переменную по сечению структуру и механические свойства. Заготовку получают путем горячего...
Тип: Изобретение
Номер охранного документа: 0002455115
Дата охранного документа: 10.07.2012
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
+ добавить свой РИД