×
20.12.2014
216.013.11cc

Результат интеллектуальной деятельности: СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к управлению ориентацией искусственного спутника Земли (ИСЗ) с панелями солнечных батарей (ПСБ). Согласно предложенному способу осуществляют необходимые развороты ИСЗ вместе с ПСБ и, отдельно, ПСБ - вокруг первой и второй осей. При этом антенну ИСЗ ориентируют на Землю, а нормаль к ПСБ - на Солнце. В интервалах неопределенности ориентации ИСЗ на теневых орбитах производят независимые упреждающие программные развороты вокруг первой и второй осей ИСЗ. В разных вариантах этих разворотов после первого из них удерживают ИСЗ в промежуточном положении, а затем восстанавливают штатную ориентацию ИСЗ. Этим достигается повышение точности прогнозирования движения ИСЗ на теневых орбитах и точности измерения дальности до ИСЗ. Техническим результатом изобретения является повышение точности определения потребителями навигационно-временных данных по навигационным ИСЗ. 3 з.п. ф-лы, 12 ил.

Изобретение относится к области космической техники, а точнее к способу ориентации навигационных спутников Земли.

В процессе штатного функционирования спутника на орбите осуществляется его пространственная ориентация на Землю, Солнце, в плоскости орбиты: одновременно по двум или трем вышеперечисленным направлениям [1].

Пространственное положение связанной с центром масс спутника системой координат XcYcZc в зависимости от углового движения спутника по орбите (угол γ) в наземной орбитальной системе координат X0Y0Z0 определяется из решения сферического треугольника (см. фиг.1):

где β - угол «Солнце - Земля - Спутник», рассчитывается по формуле: β=180-РСОЗ, где РСОЗ - угол «Солнце - Объект (Спутник) - Земля» (в дальнейшем СОЗ) в спутниковой орбитальной системе координат; γ - угол положения спутника на орбите; η - угол склонения Солнца над плоскостью орбиты; α - угол между плоскость орбиты и плоскостью СОЗ.

За один оборот спутника на орбите (0≤γ≤360°) значения углов слежения ограничены следующими диапазонами: η≤β≤180°-η, η≤α≤90°.

Таким образом, при одновременной ориентации антенн спутника на Землю и панелей солнечных батарей (ПСБ) на Солнце необходимо вводить кинематическую связь, обеспечивающую слежение по углам β и α с помощью одностепенного или двухстепенного приводов.

Угловые скорости слежения определяются дифференцированием уравнений (1) и (2):

,

где Kβ, Kα - коэффициенты трансформации скорости слежения; - угловая скорость движения спутника, для круговых орбит имеющая постоянное значение, равное (здесь Т - период обращения спутника по орбите).

Известен способ ориентации спутника [1], предусматривающий непрерывную трехосную ориентацию корпуса спутника вместе с жестко установленными на нем антеннами и двигателями коррекции (ДК) в орбитальной системе координат (на Землю и в плоскости орбиты) и ориентацию панелей солнечных батарей на Солнце с помощью привода, кинематически связанного с корпусом спутника (см. фиг.2). Такая схема ориентации нашла применение на связных спутниках, требующих непрерывного слежения узконаправленных диаграмм антенн на выбранную зону поверхности Земли, поддержание орбиты выдачей импульсов коррекции при одновременной работе спутника по целевому назначению с организацией непрерывного слежения ПСБ на Солнце разворотом с помощью привода вокруг бинормали к орбите с угловой скоростью (для геостационарных спутников с одностепенным приводом) и дополнительно вокруг ортогонального направления к бинормали с угловой скоростью (для спутников с любым наклонением орбиты при наличии двухстепенного привода).

На навигационных спутниках используется антенна с широкой диаграммой направленности, охватывающей всю Землю (глобальная зона обслуживания), а в процессе целевого функционирования не допускается выдача импульсов коррекции. Для этих спутников более приемлема солнечно-земная схема ориентации [1], способ реализации которой наиболее близок к заявляемому техническому решению по технической сущности и достигаемому техническому результату (см. фиг.3).

Известный способ ориентации навигационного спутника включает ориентацию первой оси спутника вместе с антенной на Землю (по радиусу-вектору орбиты) и ориентацию панелей солнечных батарей на Солнце разворотом спутника вместе с панелями солнечных батарей относительно первой оси спутника до совмещения нормали к панелям солнечных батарей с плоскостью «Солнце - Спутник - Земля» и разворотом панелей солнечных батарей вокруг второй оси вращения, перпендикулярной первой, до совмещения нормали к панелям солнечных батарей с направлением на Солнце. Описанный способ принят за прототип изобретения.

В процессе функционирования навигационного спутника на орбите в течение года угол склонения Солнца (угол η) изменяется в диапазоне +90°, что приводит к появлению ситуаций с неопределенностью в ориентации спутника, обусловленных наличием теневых орбит (тень от Земли пересекает орбиту спутника в зоне малых значений угла СОЗ), а также возникновение в зоне больших значений угла СОЗ высоких угловых скоростей слежения по углу α, превышающих возможности исполнительных органов.

Условия возникновения периода теневых орбит определяются неравенством:

где βT - угловой размер теневого участка орбиты спутника от Земли (в дальнейшем - ТУЗ); R - радиус Земли; H - высота круговой орбиты спутника.

Длительность ТУЗ для круговых орбит, используемых навигационными спутниками, определяется из уравнения (1):

где γT - угловая зона теневого участка в плоскости орбиты.

Так, для круговой орбиты навигационного спутника высотой Н≈20000 км угловая скорость ≈0,5°/мин, значение угла βT≈14,5°, а период времени существования теневых орбит может достигать 25% в течение каждого полугода. При этом максимальная длительность ТУЗ составляет около 8% длительности периода обращения спутника Т [1].

На время прохождения ТУЗ слежение ПСБ по углам β и α не осуществляется ввиду отсутствия ориентира (Солнца), в то время как ориентация первой оси XC спутника и, соответственно, электрической оси антенны на Землю поддерживается по информации прибора ориентации на Землю. Поэтому после прохождения ТУЗ начинается восстановление штатной ориентации ПСБ на Солнце путем разворота по углу α вокруг первой оси XC спутника с поисковой скоростью WП1 до совмещения нормали к ПСБ с плоскостью СОЗ и разворота ПСБ по углу β вокруг второй оси ZC спутника с поисковой скоростью WПСБ до совмещения нормали к ПСБ с направлением на Солнце .

Длительность восстановления ориентации зависит от величины рассогласования по углу слежения αП на момент выхода из ТУЗ и включает две операции: совмещение с плоскостью СОЗ (длительность t1) и доразворот ПСБ в плоскости СОЗ (длительность t2) до совмещения нормали к ПСБ с направлением на Солнце:

где WПСБ - угловая скорость вращения ПСБ.

Начальное значение угла αП, с которого начинается восстановление ориентации, зависит от разворота спутника в тени Земли вокруг первой оси за счет наличия остаточных (случайных) угловых скоростей и является непрогнозируемой величиной, находясь в пределах 0°…180°. Поэтому длительность разворота вокруг первой оси tП является случайной величиной.

Кроме того, на теневых орбитах в зависимости от положения Солнца относительно плоскости орбиты угловые скорости слежения изменяются в широком диапазоне и достигают максимальных значений в следующих точках орбиты:

Так, для теневых орбит навигационного спутника (H≈20000 км), в соответствии с формулами (8) и (9), этот диапазон равен 0,97≤ ≤1,0, 3,9≤ <∞. Т.е. на теневых орбитах, удовлетворяющих условию в зонах малых и больших углов СОЗ могут возникать ситуации, когда максимальная скорость слежения вокруг первой оси спутника (угол α) может превысить возможности исполнительных органов слежения (см. фиг.4).

Интервалы участка орбиты спутника, где угловая скорость слежения превышает скорость слежения исполнительных органов, определяются из решения квадратного уравнения (4) относительно cos γ:

где γПС - значение угла γ, с которого ; - реализуемое значение коэффициента трансформации, .

В зоне орбиты спутника с малыми значениями углов СОЗ, где , происходит рассогласование программы совмещения второй оси спутника с фактической плоскостью СОЗ, что приводит к увеличению погрешности ориентации ПСБ на Солнце в течение следующего времени:

где αП - угол разворота вокруг первой оси в процессе восстановления ориентации, являющийся случайной величиной, распределенной в диапазоне 0<αП≤2(90°-η);

ДγПС - зона углов неопределенности слежения.

На период неопределенности ориентации ПСБ при прохождении спутником теневой орбиты угол между нормалью к ПСБ и направлением на Солнце определяется следующей зависимостью (см. фиг.5):

где Δβ - угол отклонения нормали к ПСБ от оси ХС на момент входа спутника в ТУЗ; ΔγH - зона неопределенности ориентации, равная γT или ΔγПС.

Вследствие появления непрогнозируемых положений нормали к ПСБ относительно направления на Солнце на интервалах неопределенности (вблизи минимальных и максимальных значений углов СОЗ) возрастают непрогнозируемые составляющие ускорения от силы светового давления, действующего на спутник, что приводит к ухудшению точности прогнозирования параметров движения навигационного спутника на теневых орбитах и, как следствие, повышает погрешность обсервации потребителя по навигационному спутнику.

Расчет воздействия сил светового давления на единичную площадку ПСБ проводится по известным формулам [1, 2], учитывающим составляющие от поглощенного (SП), зеркального (SЗО) и диффузно-отраженного (SДО) суммарного солнечного потока (см. фиг.6) и представленных двумя способами:

а) в виде двух векторов, развернутых на угол φ:

fτ - составляющая светового давления, параллельная падающему световому потоку;

fn - составляющая светового давления, параллельная нормали к площадке ;

б) в виде двух ортогональных векторов:

- параллельно нормали к площадке

- в боковом направлении (в плоскости площадки)

В интервалах неопределенности боковая составляющая может занимать произвольное положение относительно вектора скорости спутника (угол αП), что вносит погрешность в расчете этих сил ≤2fδ.

Расчеты по формулам (12…13) сил светового давления для спутника ГЛОНАСС в интервале неопределенности tn=15 мин, tПС=40 мин показали, что они отличаются от прогнозируемых значений до 10% по радиусу-вектору и до 30% по вектору скорости.

Это приводит к росту погрешности прогнозирования положения спутника на орбите на суточном интервале до 10% (подтверждено результатами натурных испытаний спутника системы ГЛОНАСС).

Кроме того, наличие непрогнозируемых разворотов спутника вокруг первой оси (угол α) в зоне малых и больших значений СОЗ вносит дополнительную погрешность в измерениях дальности от спутника до потребителей (ΔD) в случае смещения фазового центра навигационной антенны относительно центра масс спутника (см. фиг.7):

где D0 - дальность до центра масс спутника; D - дальность до фазового центра; ΔDr, ΔDф - составляющие погрешности дальности от смещения фазового центра антенны относительно центра масс спутника; lr - линейное смещение фазового центра антенны вдоль первой оси спутника; R - радиус Земли; θ - угловое положение потребителя относительно радиуса-вектора орбиты спутника r; l0 - линейное смещение фазового центра антенны относительно первой оси спутника.

Необходимо отметить, что смещение фазового центра антенны вдоль первой оси спутника (lr) приводит к появлению постоянной составляющей погрешности измерения дальности, не зависящей от разворотов спутника (ΔDr=const).

Расчеты по формуле (14) максимальной погрешности измерений дальности для спутника ГЛОНАСС для второй составляющей при l0≈0,5 м и дают величину 0≤ΔDr≤0,13 м, что вносит существенный вклад в определение местоположения потребителя и в расчетах ухода бортового времени спутника [1, 3].

Таким образом, на теневых орбитах штатная ориентация спутника осуществляется при всех углах слежения за исключением интервалов неопределенности вблизи максимальных и минимальных значений углов СОЗ, что является недостатком известного способа.

Технической задачей данного изобретения является повышение точности навигационно-временных определений потребителей по навигационным спутникам.

Данная техническая задача решается за счет того, что в способе ориентации навигационного спутника, включающем ориентацию первой оси спутника вместе с антенной на Землю и ориентацию панелей солнечных батарей на Солнце разворотом спутника вместе с панелями солнечных батарей относительно первой оси спутника до совмещения нормали к панелям солнечных батарей с плоскостью «Солнце - Спутник - Земля» и разворот панелей солнечных батарей вокруг второй оси вращения, перпендикулярной первой, до совмещения нормали к панелям солнечных батарей с направлением на Солнце, осуществляют в заданных интервалах орбиты, охватывающих интервалы неопределенности ориентации спутника на теневых орбитах, независимые упреждающие программные развороты вокруг первой и второй осей спутника на расчетную величину с промежуточным удержанием заданной ориентации.

Независимые упреждающие программные развороты могут быть реализованы различными способами.

Способ ориентации навигационного спутника в интервалах неопределенности, а именно ориентация ПСБ на Солнце, реализуется за счет упреждающего программного разворота вокруг второй оси спутника до совмещения нормали к панелям солнечных батарей с направлением, параллельным первой оси спутника, удержания в этом положении и последующего совмещения нормали к панелям солнечных батарей с направлением на Солнце на заданных интервалах орбиты, охватывающих интервалы неопределенности ориентации спутника и расположенных симметрично относительно максимальных и минимальных значений углов «Солнце - Спутник - Земля».

Совмещение нормали к ПСБ с направлением первой оси ХС спутника (Δβ=0) и удержание в этом положении (ортогональное положение ПСБ) приводит к тому, что при развороте спутника вокруг первой оси (угол αП) величина угла φ не изменяется и равна углу β (см. формулу (11)), а значит, величина ускорения от силы светового давления тоже не изменяется (см. формулы (12)…(13)). То есть для заданного положения ПСБ при заранее заданных величинах интервалов, охватывающих интервалы неопределенности, величина ускорения от силы светового давления является прогнозируемой величиной, определяемой значением угла β и угла γ при заданном значении угла склонения η.

При этом необходимо отметить, что максимальное смещение спутника под воздействием сил светового давления создается ее боковой составляющей, которая меняет свой знак при переходе спутника через точки орбиты γ=0° и γ=180°. Поэтому организация интервалов с ортогональным положением ПСБ симметрично относительно максимального и минимального значений углов СОЗ приведет к взаимной компенсации составляющих сил светового давления по вектору скорости (вносящих максимальный вклад в смещение спутника по орбите) и позволит исключить погрешность прогнозирования из-за погрешностей ориентации в знании оптических характеристик солнечных батарей вследствие их деградации, а также упростить расчеты, так как отпадает необходимость в вычислении сил светового давления по вектору скорости на интервале неопределенности.

Реализация предложенного способа на навигационном спутнике может быть осуществлена следующим способом.

Разворот и удержание ПСБ может быть осуществлен с использованием штатной схемы разворота ПСБ, дополненной в части совмещения нормали к ПСБ с направлением, параллельным первой оси спутника, удержания ПСБ в этом положении и перехода к штатной ориентации.

Расчет положений спутника на орбите, охватывающих интервалы неопределенности ориентации ПСБ и размещаемых симметрично относительно максимального и минимального значений углов СОЗ, может осуществляться с использованием следующих зависимостей (см. фиг.8-10):

где tВХ, tВЫХ - моменты времени входа и выхода из тени Земли или из зоны неопределенности ориентации при малых углах СЗС (больших углах СОЗ); t1 - момент выдачи команды на установку ПСБ в ортогональное положение и блокировка штатной схемы слежения ПСБ за Солнцем по углу β1; t2 - момент фиксации ПСБ в ортогональном положении; t4 - момент снятия блокировки слежения ПСБ за Солнцем; t5 - начало штатного слежения ПСБ за Солнцем.

Команды управления режимами работы спутника, выдаваемые на моменты времени t1, t2, t4, t5, могут формироваться как от временной программы спутника, так и автономно.

Значения tВХ, tВЫХ, , η определяются по общеизвестным уравнениям, на основании данных о параметрах орбиты спутника на начало каждого следующего витка и положения Солнца относительно плоскости орбиты.

Значение WПСБ определяется из конструктивных параметров системы ориентации данного спутника.

Наличие интервалов перехода от штатного слежения ПСБ к ортогональному ее положению (t2-t1, t5-t4) не вносит погрешности в расчеты. Составляющие сил светового давления по вектору скорости взаимно исключаются (ввиду симметрии), а по радиусу-вектору рассчитываются по формулам (12)…(13) при следующих условиях: φ=180°-β при cosγ≥0 и φ=β при cosγ<0, т.е. эти величины прогнозируемые.

Способ ориентации спутника в интервалах неопределенности, а именно ориентации антенн спутника на Землю, может быть реализован по двум схемам в зависимости от конструктивного исполнения спутника в части размещения излучательного радиатора системы терморегулирования.

По первой схеме (см. фиг.11) упреждающий программный разворот вокруг первой оси спутника осуществляется до совмещения второй оси спутника с плоскостью орбиты с удержанием в этом положении и последующим совмещением второй оси спутника с нормалью к плоскости «Солнце - Спутник - Земля» на заданных интервалах орбиты, охватывающих интервалы неопределенности ориентации панелей солнечных батарей и расположенных симметрично относительно максимальных и минимальных значений углов «Солнце - Спутник - Земля». В этой схеме величина угла разворота в интервале τ12 и τ34 составляет α=90°|α1|, где α1 - значение угла α (формула (2)) на момент времени τ1. Вследствие выбранной схемы разворотов Солнце освещает поверхность спутника вне интервалов неопределенности только с одной стороны, совпадающей с положительным направлением оси YC. Это позволяет организовать радиационные поверхности спутника со стороны, совпадающей с отрицательным направлением оси YC, т.е. не освещаемой Солнцем.

По второй схеме (см. фиг.12) упреждающий программный разворот вокруг первой оси спутника осуществляется до совмещения второй оси спутника с нормалью к плоскости орбиты с удержанием в этом положении и последующим совмещением второй оси спутника с нормалью к плоскости «Солнце - Спутник - Земля» на заданных интервалах орбиты, охватывающих интервалы неопределенности ориентации панелей солнечных батарей и расположенных симметрично относительно максимальных и минимальных значений углов «Солнце - Спутник - Земля». В этой схеме величина угла разворота в интервале τ12 и τ34 составляет αРАЗ=|α1|. Вследствие выбранной схемы разворотов Солнце освещает поверхность спутника вне интервалов неопределенности первой половины витка со стороны положительного направления оси YC, а вторую половину витка - со стороны отрицательного направления оси YC, что делает нецелесообразным организацию радиационных поверхностей спутника на этих сторонах спутника, т.к. они освещаются Солнцем.

Расчет положений спутника на орбите, охватывающих интервалы неопределенности положения фазовых центров антенн и размещаемых симметрично относительно максимального и минимального значений углов СОЗ, может осуществляться с использованием следующих зависимостей (фиг.11, 12):

τ12-Δτ1; τ23-Δτ2; τ41+Δτ2; τ54+Δτ1

где α1 - значение угла α на момент времени τ1, рассчитываемой по формуле (2), Δτ2 - длительность фиксированного положения, задаваемая из технических возможностей контура управления, Δτ2≥0.

Команды управления режимами работы спутника, выдаваемые на моменты времени τ1, τ2, τ4, τ5, могут формироваться как от временной программы спутника, так и автономно.

Значения τ3, , η, θ определяются по общеизвестным уравнениям на основании данных о параметрах орбиты спутника на начало каждого следующего витка и положения Солнца относительно плоскости орбиты, положения потребителя в географической системе координат.

Значение WП1, l0 определяется из конструктивных параметров данного спутника. Наличие интервалов перехода от штатной ориентации спутника к ортогональному положению его осей относительно плоскости орбиты (τ21, τ54) не вносит погрешности в расчеты. Расчет поправок дальности на этих интервалах проводится потребителями по формулам (14) при известном положении потребителя относительно спутника (угол θ) и известным (прогнозируемым) законом изменения угла программного разворота спутника вокруг первой оси (угол α).

Таким образом, техническим результатом заявленного способа является:

- повышение точности прогнозирования движения спутника на теневых орбитах вследствие снижения непрогнозируемых составляющих ускорения от сил светового давления;

- повышение точности измерения дальности вследствие снижения непрогнозируемых значений углов разворота спутника вокруг первой оси.

Источники информации

1. Чеботарев В.Е. Основы проектирования космических аппаратов информационного обеспечения: учеб. пособие/В.Е.Чеботарев, В.Е.Косенко; Сиб. гос. аэрокосмич. ун-т. - Красноярск, 2011. - 488 с.[24] с ил.

2. Эльясберг П.Е. Введение в теорию полета ИСЗ. - 2-е изд. - М.: Либроком, 2011. - 544 с.

3. w.w.w.elsevier.com/locate/asr. The GLONASS - М satellite yaw-attitude model/. F.Dilssner, T.Springer, G.Gienger, I.Dow. ESOC, 2010.


СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
СИСТЕМА ОРИЕНТАЦИИ НАВИГАЦИОННОГО СПУТНИКА
Источник поступления информации: Роспатент

Showing 71-80 of 87 items.
01.03.2019
№219.016.ce0d

Способ предотвращения несанкционированного доступа в спутниковых системах связи и устройство для его осуществления

Изобретение относится к радиотехнике и может быть использовано для предотвращения несанкционированного доступа в спутниковых системах связи. Технический результат - повышение вероятности предотвращения несанкционированного доступа в режиме реального времени. Согласно изобретению предотвращение...
Тип: Изобретение
Номер охранного документа: 0002419252
Дата охранного документа: 20.05.2011
11.03.2019
№219.016.d884

Автономная система электропитания космического аппарата

Изобретение относится к электротехнике и может быть использовано при проектировании автономных систем электропитания космических аппаратов. Технический результат состоит в повышении эффективности использования первичного источника ограниченной мощности. Автономная система электропитания...
Тип: Изобретение
Номер охранного документа: 0002395148
Дата охранного документа: 20.07.2010
20.03.2019
№219.016.e540

Способ проведения ресурсных испытаний аккумуляторов космического назначения и устройство для его реализации

Изобретение относится к системам энергоснабжения космических объектов, в частности ИСЗ. Способ заключается в проведении циклирования с контролем энергетических характеристик последовательно соединенных аккумуляторов (А) в составе их модуля. Испытания проводят в составе действующего ИСЗ. Число А...
Тип: Изобретение
Номер охранного документа: 0002390477
Дата охранного документа: 27.05.2010
29.03.2019
№219.016.f236

Стабилизированный источник питания

Предлагаемое изобретение относится к стабилизированным источникам питания и может быть использовано для питания радиоэлектронной аппаратуры. Техническим результатом настоящего изобретения является повышение стабильности выходного напряжения при изменении тока нагрузки потребителя. Технический...
Тип: Изобретение
Номер охранного документа: 0002385482
Дата охранного документа: 27.03.2010
29.03.2019
№219.016.f484

Способ передачи цифровой информации через параллельную магистраль

Изобретение относится к вычислительной технике, электронике и может быть использовано в аппаратуре, имеющей повышенные требования к надежности. Техническим результатом является повышение отказоустойчивости устройств. Многократное нечетное повторение информации производится со смещением...
Тип: Изобретение
Номер охранного документа: 0002413283
Дата охранного документа: 27.02.2011
29.03.2019
№219.016.f605

Устройство для вывода информации

Изобретение относится к вычислительной технике и автоматике, может быть использовано в аппаратуре, имеющей повышенные требования к надежности и не имеющей доступа для ремонта, например для космических аппаратов. Техническим результатом является повышение отказоустойчивости устройства для вывода...
Тип: Изобретение
Номер охранного документа: 0002451323
Дата охранного документа: 20.05.2012
29.03.2019
№219.016.f7f6

Рупорный излучатель и способ его изготовления

Изобретение относится к антенной технике, в частности к рупорным излучателям, входящим в состав антенн космического аппарата, а также к способам их изготовления, и к способам соединения деталей, охватывающих одна другую, с помощью клея, когда одна деталь изготовлена из композиционного...
Тип: Изобретение
Номер охранного документа: 0002466484
Дата охранного документа: 10.11.2012
29.03.2019
№219.016.f816

Неосевой имитатор солнечного излучения тепловакуумной камеры

Изобретение может быть использовано при тепловакуумных испытаниях космического аппарата (КА) или его составных частей. Имитатор содержит входной иллюминатор, герметично встроенный в корпус тепловакуумной камеры, параболический коллимирующий отражатель для отражения имитируемого солнечного...
Тип: Изобретение
Номер охранного документа: 0002468342
Дата охранного документа: 27.11.2012
29.04.2019
№219.017.4531

Блок хранения и подачи жидкого топлива для двигательных установок космического аппарата

Заявляемое изобретение относится к космической технике, в частности к системам хранения и подачи жидкого топлива для двигательных установок космического аппарата. Блок хранения и подачи жидкого топлива для двигательных установок космического аппарата содержит топливную и газовую емкость,...
Тип: Изобретение
Номер охранного документа: 0002400407
Дата охранного документа: 27.09.2010
09.05.2019
№219.017.4c3b

Мембранный компрессор

Устройство предназначено для использования в области машиностроения, преимущественно для перекачивания дорогих и редких газов высокой чистоты с одновременным повышением их давления. Мембранный компрессор состоит из корпуса и крышки, от которых отходят трубки входа газа низкого давления, выхода...
Тип: Изобретение
Номер охранного документа: 0002398132
Дата охранного документа: 27.08.2010
Showing 71-78 of 78 items.
03.11.2018
№218.016.9a36

Способ ориентации космического аппарата в солнечно-земной системе координат

Изобретение относится к управлению ориентацией космического аппарата (КА) с солнечными батареями (СБ). Способ включает ориентацию первой оси КА на центр Земли путем его разворотов вокруг второй и третьей осей по информации с прибора ориентации на Землю. Ориентацию второй оси КА относительно...
Тип: Изобретение
Номер охранного документа: 0002671597
Дата охранного документа: 02.11.2018
21.02.2019
№219.016.c505

Способ ориентации навигационного космического аппарата

Изобретение относится к области космической техники. В способе ориентации навигационного космического аппарата (КА) при проведении упреждающих программных разворотов по информации звездного прибора в процессе проведения упреждающего программного разворота на каждом цикле управления вычисляют...
Тип: Изобретение
Номер охранного документа: 0002680356
Дата охранного документа: 19.02.2019
22.11.2019
№219.017.e546

Способ ориентации космического аппарата

При управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого...
Тип: Изобретение
Номер охранного документа: 0002706743
Дата охранного документа: 20.11.2019
12.12.2019
№219.017.ec7a

Способ удержания геостационарного космического аппарата

Изобретение относится к космической технике. В способе удержания космического аппарата (КА) в заданном диапазоне долгот и широт рабочей позиции на орбите рассчитывают коррекции наклонения на двух номинально противоположных активных участках (АУ), рассчитывают текущие векторы эксцентриситета на...
Тип: Изобретение
Номер охранного документа: 0002708468
Дата охранного документа: 09.12.2019
22.01.2020
№220.017.f8d0

Способ ориентации космического аппарата

Изобретение относится к управлению ориентацией космического аппарата (КА) в процессе коррекции его орбиты. Способ включает развороты КА относительно его осей, ориентацию панелей солнечных батарей (СБ) нормалью их поверхности на Солнце путем их разворота вокруг оси, параллельной третьей оси КА....
Тип: Изобретение
Номер охранного документа: 0002711656
Дата охранного документа: 20.01.2020
14.05.2020
№220.018.1c34

Способ ориентации космического аппарата

Изобретение относится к космической технике. В способе ориентации космического аппарата (КА) ориентируют КА относительно направления на Солнце и Землю. После обеспечения ориентации КА относительно направления на Солнце в заданном диапазоне углов с использованием автономного контура управления...
Тип: Изобретение
Номер охранного документа: 0002720577
Дата охранного документа: 12.05.2020
24.06.2020
№220.018.2a16

Способ уменьшения погрешности прогнозирования движения центра масс навигационного космического аппарата

Изобретение относится к области космической техники и может быть использовано для уменьшения погрешности прогнозирования движения центра масс навигационного космического аппарата (КА). Способ прогнозирования движения центра масс навигационного КА включает прогнозирование ухода центра масс...
Тип: Изобретение
Номер охранного документа: 0002724216
Дата охранного документа: 22.06.2020
14.05.2023
№223.018.5588

Способ построения космической системы ретрансляции информации между земными станциями и абонентскими терминалами

Изобретение относится к технике связи и может использоваться в космических системах ретрансляции информации между лунными станциями., которые могут быть размещены как на поверхности Луны, так и на окололунной орбите, и земными станциями управления и приема/передачи сообщений с использованием...
Тип: Изобретение
Номер охранного документа: 0002738263
Дата охранного документа: 11.12.2020
+ добавить свой РИД