×
20.12.2014
216.013.1144

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ТОНКОЙ ФОЛЬГИ ТВЕРДОГО РАСТВОРА Pd-Cu С КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ ТИПА CsCi

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии создания селективных газовых мембран, функционирующих за счет избирательной диффузии атомов газа (водорода) сквозь тонкую металлическую пленку (из палладия или сплавов на его основе), которые используются в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из водородсодержащих смесей газов, в микрореакторах. Способ формирования тонкой фольги твердого раствора Pd-Cu с кристаллической решеткой типа CsCl включает магнетронное распыление мишени состава, близкого к Pd-40% Cu, в среде Ar 10 Па на термически оксидированные полированные пластины монокристаллического кремния и отделение полученной фольги от подложки, при этом температура подложки составляет 300-700 К, а отделенную тонкую фольгу дополнительно нагревают в вакууме не хуже 10Па со скоростью 100 К/час до температуры 970 К и охлаждают со скоростью 100-200 К/час до комнатной температуры. Технический результат заключается в создании легковоспроизводимым и экономичным способом высокоэффективных мембран для глубокой очистки водорода, обладающих высокой селективной водородопроницаемостью и производительностью. 1 ил., 1 пр.
Основные результаты: Способ формирования тонкой фольги твердого раствора Pd-Cu с кристаллической решеткой типа CsCl, включающий магнетронное распыление мишени состава, близкого к Pd-40% Cu, в среде Ar 10 Па на термически оксидированные полированные пластины монокристаллического кремния, отделение полученной фольги от подложки, отличающийся тем, что температура подложки должна быть от 300 до 700 К, а отделенная тонкая фольга дополнительно нагревалась в вакууме не хуже 10Па со скоростью 100 К/час до температуры 970 К и охлаждалась со скоростью 100-200 К/час до комнатной температуры.

Изобретение относится к технологии создания селективных газовых мембран, функционирующих за счет избирательной диффузии атомов газа (водорода) сквозь тонкую металлическую пленку (из палладия или сплавов на его основе), которые используются в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из водородсодержащих смесей газов, в микрореакторах и др.

Традиционно мембраны изготовляют из фольги мембранных сплавов толщиной 30-100 мкм, полученной методом прокатки. Сопротивление мембран прохождению водорода обратно пропорционально их толщине. Уменьшение толщины селективных мембран - основной способ повышения их производительности. Однако принципиальные трудности уменьшения толщины фольги методом прокатки, низкая механическая прочность сверхтонких мембран, полученных таким методом, и сложность их герметизации не позволяют создавать надежные промышленные мембраны для очистки водорода с толщиной селективной фольги менее 30 мкм [Бурханов Г.С., Горина Н.Б., Кольчугина Н.Б., Рошан Н.Р. Российский химический журнал. - 2006. Т.50, с.36-40].

Известен способ изготовления композитных мембран [патент RU 2285748, МПК С23С 26/00, B81B 3/00, H04R 7/16, опубл. 20.10.2006], по которому осуществляют нанесение на очищенную технологическую подложку тонкой пленки из металлов, или сплавов, или металлических соединений на их основе, последующее отделение металлической пленки от подложки и перенос ее на пористый держатель мембраны. В качестве подложки берут пластины монокристаллического кремния приборного качества, используемые для микроэлектроники. Нанесение пленки осуществляют по крайней мере одним из методов физического или химического осаждения. Отделение металлической пленки от подложки осуществляют путем полного или частичного растворения подложки в растворах флотационного типа для данной металлической пленки. Перенос металлической пленки на пористый держатель мембраны осуществляют из водного раствора с последующим закреплением металлической пленки на держателе.

Недостатками данного метода являются сложности герметизации селективного слоя на пористом держателе и существенное ограничение минимальной толщины металлической пленки, связанное с ее последующим переносом.

В патенте US 6372363 [МПК B01D 71/02, C01B 3/50, С22С 5/04, C22F 1/14, опубл. 16.04.2002] описан способ получения мембраны, в частности, из сплава состава Pd-40% Cu, включающий первичную прокатку фольги сплава палладия до толщины 50 мкм и последующее утонение фольги химическим травлением до 2,7 и 10,8 мкм. Недостатки этого способа - низкая технологичность и сложность в подборе химического состава для травления различных палладиевых сплавов.

Гибкость вакуумных технологий позволяет в принципе создавать свободную фольгу различных металлов и сплавов любой толщины (от долей до десятков микрометров), а метод магнетронного распыления позволяет наносить конденсированный слой твердых растворов металлов заданного состава. Сегодня перечень публикаций по проблеме создания свободной тонкой фольги эффективных мембранных сплавов на основе Pd методами вакуумных технологий весьма ограничен.

Из мембранных сплавов на основе Pd [Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т.2 / Под общей редакцией Н.П. Лякишева - М.: Машиностроение, 1997. - 1024 с.] для глубокой очистки водорода давно привлекает внимание система Pd-Cu. Для этой системы помимо уменьшения толщины фольги возможен второй путь повышения производительности - это многократное увеличение удельной проницаемости при синтезе упорядоченного твердого раствора с решеткой типа CsCl (β-фаза) [Водород в металлах. Под ред. Г. Алефельда и М. Фелькля, пер. с англ. под ред. Ю.М. Кагана, Т.1. - М.: Мир. - 1981. - 475 с.], образование которой возможно в относительно узкой области элементного состава (по массе близко к Pd-40%Cu). Кристаллическая решетка типа CsCl упорядоченного твердого раствора PdCu (β-фаза) по сравнению с гранецентрированной кубической (ГЦК) решеткой неупорядоченного твердого раствора (α-фаза) характеризуется меньшим расстоянием между октапустотами (по ним происходит диффузия водорода), что снижает барьер для диффузии. Согласно обобщенным результатам большого числа экспериментальных работ энергия активации диффузии водорода в упорядоченном твердом растворе составляет 0,035 эВ, в неупорядоченном - 0,325 эВ, в Pd - 0,23 эВ. Коэффициент диффузии при температуре 300 К в β-фазе почти на четыре порядка величины больше, чем в α-фазе, на два порядка больше, чем в Pd.

Таким образом, перспективный путь повышения производительности мембраны - увеличение водородопроницаемости за счет α→β фазового превращения и синтез фольги из упорядоченного твердого раствора Pd-Cu. Результаты системных исследований кинетики процесса, выполненные на различных образцах (фольга, проволока, порошки), показали, что α→β превращению способствует исходное неравновесное состояние сплава, достигаемое пластической деформацией.

Индустрия мембран из фольги упорядоченного твердого раствора Pd-Cu (β-фаза) методом прокатки чрезвычайно затруднена, поскольку включает в себя промежуточные отжиги при температуре значительно выше интервала существования упорядоченной β-фазы. Авторы [Волков А.Ю., Новикова О.С., Антонов Б.Д. // Неорганические материалы. - 2012. - Т.48. - №12. - С.1325-1330] экспериментально показали возможность полного α→β превращения при условии интенсивной пластической деформации (90-95%) и последующей длительной термообработки. Способ предполагает нагрев пластически деформированного сплава до 550-600°С и медленное охлаждение до 200°С с выдержкой по 1 неделе через каждые 50°С; далее материал остывает со скоростью 20°С/сут. В итоге был получен сплав, практически полностью упорядоченный по типу CsCl. Очевидным недостатком этого способа является низкая производительность и технологичность, сложность и продолжительность термомеханической обработки.

В статье «Водородопроницаемость фольги сплавов Pd-Cu, Pd-Ru и Pd-In-Ru, полученной магнетронным распылением» [В.М. Иевлев и др. // Конденсированные среды и межфазные границы, 2014, Том 14, №4, с.422-427] описан метод, принятый за прототип, согласно которому однофазную фольгу упорядоченного твердого раствора (β-фаза) получали магнетронным распылением мишени состава Pd-40% Cu при давлении рабочего газа (Ar) 10-1 Па на термически оксидированные полированные пластины монокристаллического кремния с толщиной оксида до 600 нм при температуре подложки 300 К. В процессе роста на ненагретой подложке при скорости конденсации около 2 нм·с-1 формируется только β-фаза с двумя преобладающими аксиальными текстурами роста зерен <110> и <112>.

Однако при повышении температуры подложки данным методом получали двухфазную (β и α-фазы) с преобладанием первой фазы.

Поскольку не всегда удается выдержать необходимую концентрацию компонентов в сплавной мишени (разная скорость распыления компонентов, диффузия компонентов в зону нагрева), а также параметров конденсации (скорость конденсации отличается от оптимальной, температура подложки повысилась вследствие длительной конденсации при изготовлении толстых пленок и т.п.), то в пленке образуется смесь фаз упорядоченного и неупорядоченного твердых растворов, таким образом, образование неупорядоченного твердого раствора приводит к резкому снижению проницаемости пленки.

Предлагаемый способ направлен на снижение содержания доли неупорядоченной фазы в уже готовой (сконденсированной) пленке.

Задача настоящего изобретения состоит в повышении производительности селективных композитных мембран для глубокой очистки водорода, снижении расхода драгоценного металла, снижении количества брака по упорядоченной фазе.

Технический результат заключается в создании легковоспроизводимым и экономичным способом высокоэффективных мембран для глубокой очистки водорода, обладающих высокой селективной водородопроницаемостью и производительностью.

Технический результат достигается тем, что в способе формирования тонкой фольги твердого раствора Pd-Cu с кристаллической решеткой типа CsCl, включающем магнетронное распыление мишени состава, близкого к Pd-40% Сu, в среде Ar 10-1 Па на подложку из термически оксидированных полированных пластин монокристаллического кремния, отделение полученной фольги от подложки, согласно изобретению температура подложки должна быть от 300 до 700 K, а отделенная тонкая фольга дополнительно нагревалась в вакууме не ниже 10-4 Па со скоростью 100 К/час до температуры 970 К и охлаждалась со скоростью 100-200 К/час до комнатной температуры.

На чертеже приведены фрагменты рентгеновских дифрактограмм фольги сплава Pd-40% Cu, сконденсированной на предварительно нагретой до 670 К подложке (А), и отделенной от подложки фольги, подвергнутой термообработке в вакууме (Б) и охлажденной до комнатной температуры (В).

Плотность потока конденсируемых из газовой фазы атомов металла составляет 0,5÷2,5 см-2с-1.

Пример. Формирование однофазной фольги из упорядоченного твердого раствора Pd-Cu в процессе роста и последующей термообработки

Сплав состава, близкого к Pd-40% Cu, допускающий погрешность ±3%, изготовлен в индукционной печи при давлении газов не более 10-2 Па. Из него сформировали мишень диаметром 80,0 мм, толщиной 3,0 мм. Нанесение конденсата производили методом магнетронного распыления в среде Ar (10-1 Па). Скорость конденсации составляла 2,0 нм·с-1. Конденсацию проводили на окисленную поверхность монокристаллической пластины кремния (SiO2/Si). Фольга отделялась механически. Температура подложки составляла 670 К.

Из фрагментов РД следует, что в процессе роста формируется двухфазная фольга (см. чертеж (А)): преобладает β-фаза с текстурой <112> при незначительной доле α-фазы.

Отделенную от подложки фольгу подвергали нагреву до 970 К в вакууме не ниже 10-4 Па в камере рентгеновского дифрактометра ARL X-TRA со скоростью 100 К/час. При нагревании исходных однофазных или двухфазных образцов в камере дифрактометра до 870 К происходили рекристаллизация и полное превращение β-фазы в α-фазу (аналогично Б на чертеже) с аксиальной текстурой <111>. После нагрева фольгу охлаждали со скоростью 100 К/час до комнатной температуры. В результате происходит полное обратное превращение в β-фазу (В на чертеже).

В том случае, если в исходной структуре преобладала текстура <112> β-фазы, то в результате цикла нагревание-охлаждение формировалась текстура <110> β-фазы. При этом заметно сужение пиков, свидетельствующее о совершенствовании структуры фольги в результате рекристаллизации. Температурный гистерезис полного фазового превращения в заданном режиме составляет около 100 К.

Предлагаемый способ позволяет реализовать оба подхода повышения производительности мембран глубокой очистки водорода: путем создания однофазной структуры с кристаллической решеткой типа CsCl (увеличение удельной водородопроницаемости) и уменьшением толщины селективной фольги. Сравнение разработанного способа изготовления мембранного материала с известными способами показывает, что использование данного способа позволяет управлять фазовым составом и параметрами структуры селективного слоя режимами вакуумного нанесения (магнетронное распыление и конденсация в вакууме) и режимами последующей термообработки (нагрев и охлаждение с заданными температурой и скоростью в вакууме). По сравнению с методами и подходами к формированию упорядоченной структуры фольги Pd-Cu предлагаемый способ многократно снижает время процесса.

Способ формирования тонкой фольги твердого раствора Pd-Cu с кристаллической решеткой типа CsCl, включающий магнетронное распыление мишени состава, близкого к Pd-40% Cu, в среде Ar 10 Па на термически оксидированные полированные пластины монокристаллического кремния, отделение полученной фольги от подложки, отличающийся тем, что температура подложки должна быть от 300 до 700 К, а отделенная тонкая фольга дополнительно нагревалась в вакууме не хуже 10Па со скоростью 100 К/час до температуры 970 К и охлаждалась со скоростью 100-200 К/час до комнатной температуры.
СПОСОБ ФОРМИРОВАНИЯ ТОНКОЙ ФОЛЬГИ ТВЕРДОГО РАСТВОРА Pd-Cu С КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ ТИПА CsCi
Источник поступления информации: Роспатент

Showing 61-64 of 64 items.
19.01.2018
№218.016.0897

Способ разделения минеральной соли и нейтральной аминокислоты в растворе их смеси

Изобретение относится к способам получения очистки аминокислот. Способ выделения нейтральной аминокислоты из водного раствора смеси с минеральной солью нейтрализационным диализом, включающий пропускание смешанного раствора в среднюю камеру трехсекционного диализатора и подачу растворов кислоты...
Тип: Изобретение
Номер охранного документа: 0002631798
Дата охранного документа: 26.09.2017
04.04.2018
№218.016.2f36

Способ изготовления композиционных мембран на основе тонких пленок металлов

Изобретение относится к технологии создания селективных мембран, функционирующих за счет избирательной диффузии водорода сквозь тонкую пленку палладия или его сплава, и может быть использовано в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из...
Тип: Изобретение
Номер охранного документа: 0002644640
Дата охранного документа: 13.02.2018
18.05.2018
№218.016.5132

Способ оценки биотропного проявления электромагнитного излучения сверхвысокой частоты, интегрированного под контроль гена dps

Изобретение относится к области биохимии. Описан способ оценки биотропного проявления электромагнитного излучения сверхвысокой частоты, интегрированного под контроль гена dps, согласно которому регуляторная область гена dps интегрируется в плазмиду рЕТ28b-EGFP перед геном репортерного белка...
Тип: Изобретение
Номер охранного документа: 0002653445
Дата охранного документа: 08.05.2018
20.06.2018
№218.016.6411

Способ оптимизации работы нейрокомпьютерного интерфейса

Изобретение относится к нейрофизиологии, а именно к нейрокомпьютерным интерфейсам. Способ оптимизации работы нейрокомпьютерного интерфейса включает регистрацию активности головного мозга, как по отдельности, так и совместно в любой комбинации любым из следующих методов на основе использования...
Тип: Изобретение
Номер охранного документа: 0002657858
Дата охранного документа: 15.06.2018
Showing 61-70 of 76 items.
25.08.2017
№217.015.cf2a

Способ получения липосом

Изобретение относится к области биотехнологии и позволяет получать наноконтейнеры для различного рода веществ в косметологии, фармакологии, медицине. Изобретение представляет собой способ получения липосом и характеризуется тем, что 1%-ный раствор лецитина в этиловом спирте испаряли в роторном...
Тип: Изобретение
Номер охранного документа: 0002621145
Дата охранного документа: 31.05.2017
26.08.2017
№217.015.e6a2

Аккумулятор тепловой энергии

Изобретение относится к хранению тепловой энергии и может быть использовано в устройствах для аккумулирования тепла или холода, используемых для отопления, горячего водоснабжения, кондиционирования, получения электроэнергии. Аккумулятор тепловой энергии содержит резервуар, являющийся полостью в...
Тип: Изобретение
Номер охранного документа: 0002626922
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.0897

Способ разделения минеральной соли и нейтральной аминокислоты в растворе их смеси

Изобретение относится к способам получения очистки аминокислот. Способ выделения нейтральной аминокислоты из водного раствора смеси с минеральной солью нейтрализационным диализом, включающий пропускание смешанного раствора в среднюю камеру трехсекционного диализатора и подачу растворов кислоты...
Тип: Изобретение
Номер охранного документа: 0002631798
Дата охранного документа: 26.09.2017
04.04.2018
№218.016.2f36

Способ изготовления композиционных мембран на основе тонких пленок металлов

Изобретение относится к технологии создания селективных мембран, функционирующих за счет избирательной диффузии водорода сквозь тонкую пленку палладия или его сплава, и может быть использовано в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из...
Тип: Изобретение
Номер охранного документа: 0002644640
Дата охранного документа: 13.02.2018
09.06.2018
№218.016.5cf4

Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения

Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с...
Тип: Изобретение
Номер охранного документа: 0002656022
Дата охранного документа: 30.05.2018
11.06.2018
№218.016.60c6

Способ получения твердотельных регулярно расположенных нитевидных кристаллов

Изобретение относится к технологии формирования упорядоченных структур на поверхности твердого тела и может быть использовано для получения нитевидных кристаллов из различных материалов, пригодных для термического испарения. На подложку, имеющую морфологию в виде упорядоченных пор и/или других...
Тип: Изобретение
Номер охранного документа: 0002657094
Дата охранного документа: 08.06.2018
11.10.2018
№218.016.90c4

Термолюминофор

Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона AlON, синтезированного из химически чистого α-AlO и нитрида алюминия, содержащего ряд примесей, при этом имеет...
Тип: Изобретение
Номер охранного документа: 0002668942
Дата охранного документа: 05.10.2018
26.01.2019
№219.016.b479

Способ получения фотокаталитического диоксида титана модификации анатаз и брукит на поверхности керамического изделия из рутила, полученного окислительным конструированием

Изобретение может быть использовано при получении фотокатализаторов различной формы на основе диоксида титана для фотокаталитической очистки воды и воздуха от органических соединений. Способ получения фотокаталитического диоксида титана TiO основывается на поверхностной модификации фазы рутила,...
Тип: Изобретение
Номер охранного документа: 0002678206
Дата охранного документа: 24.01.2019
29.03.2019
№219.016.f71b

Способ получения монокристалла нитрида тугоплавкого металла и изделия из него, получаемого этим способом

Изобретение предназначено для химической, электротехнической, радиоэлектронной промышленности, материаловедения и может быть использовано для получения различных изделий: проволоки, проволочной спирали, лент, тонкостенных трубок, лодочек для работы в агрессивных средах и/или для работы при...
Тип: Изобретение
Номер охранного документа: 0002431002
Дата охранного документа: 10.10.2011
29.03.2019
№219.016.f827

Способ обнаружения взрывчатых веществ

Изобретение может быть использовано при создании приборов обнаружения следовых количеств взрывчатых веществ (ВВ), применяемых для обеспечения безопасности воздушного, автомобильного, водного железнодорожного транспорта, производственных, офисных, жилых и иных помещений. Способ обнаружения ВВ...
Тип: Изобретение
Номер охранного документа: 0002460067
Дата охранного документа: 27.08.2012
+ добавить свой РИД