×
10.11.2014
216.013.04af

Результат интеллектуальной деятельности: СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

Аннотация: Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно В-изображение, превышает половину длины ультразвуковой волны, производят циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, усиливают и преобразуют в цифровые коды полученные электрические сигналы, проводят когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента. Сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки. Затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации. Технический результат: улучшение четкости визуализации полученного изображения контролируемого изделия за счет увеличения разрешающей способности для раздельной визуализации нескольких рядом расположенных дефектов, а также увеличение отношения сигнал/шум. 3 ил.
Основные результаты: Формула изобретенияСпособ визуализации ультразвуковой дефектоскопии трехмерного изделия, включающий размещение пьезопреобразователей антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно В-изображение, превышает половину длины ультразвуковой волны, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, преобразование в цифровые коды полученных электрических сигналов, их сохранение, обработку цифровых кодов, реконструкцию изображения и его визуализацию путем объединения послойно нескольких В-изображений, отличающийся тем, что после преобразования принятых ультразвуковых волн в электрические сигналы осуществляют их усиление и преобразование в цифровые коды, проводят когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента, сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки, затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации.

Изобретение относится к области анализа с помощью ультразвуковых волн материалов или изделий из металлов, керамики, пластмасс и может быть использовано в промышленности для контроля дефектов внутри деталей, для дефектоскопии различных материалов, а также в медицине для диагностики внутренних органов.

Известен способ формирования акустического изображения контролируемого объекта [RU 2246723 С1, МПК7 G01N29/04, опубл. 20.02.2005], в котором возбуждают ультразвуковые колебания в контролируемом объекте передающим пьезопреобразователем с широкой диаграммой направленности излучения, принимают акустическую волну приемным преобразователем, который последовательно располагают в различных точках на поверхности контролируемого объекта, запоминают принятые сигналы и производят их обработку, заключающуюся в том, что контролируемый объект разбивают на локальные области, затем поочередно, считая каждую из локальных областей в качестве локального сосредоточенного отражающего элемента, принятые для каждого из положений приемного пьезопреобразователя эхосигналы сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего положения приемного пьезопреобразователя. Затем суммируют сдвинутые во времени сигналы соответственно для каждой из локальных областей. После чего для каждой из локальных областей контролируемого объекта определяют амплитуду суммарного сигнала. Причем излучение и прием акустических волн выполняют для двух частотных вариантов, в каждом из которых частоты акустических волн, используемые при ультразвуковом контроле, различны. В каждом частотном варианте для М различных предполагаемых значений скорости распространения акустической волны в материале формируют М предварительных изображений в виде значений амплитуд суммарных сигналов, соответствующих различным локальным областям контролируемого объекта. Затем проводят попарное сравнение каждой из М пар предварительных изображений, определенных в обоих частотных вариантах при одинаковых значениях предполагаемой скорости распространения М1, выбирают предполагаемую скорость распространения Мopt, при которой указанная выше пара изображений наименее отличается друг от друга, и формируют окончательное акустическое изображение контролируемого объекта в виде полусуммы этих изображений.

Недостатком этого способа является необходимость последовательного расположения в различных точках на поверхности контролируемого объекта приемного пьезопреобразователя и перестройка частотного диапазона усилителя для каждого из частотных вариантов, сложность сравнения каждой из М пар предварительных изображений.

Известен способ для визуализации ультразвуковой дефектоскопии трехмерного изделия [RU 2008120366 A, G01N29/06 (2006.01), опубл., 10.12.2009], выбранный в качестве прототипа, в котором ультразвуковые волны вводят в изделие посредством одного ультразвукового преобразователя или нескольких ультразвуковых преобразователей, и ультразвуковые волны, отраженные внутри изделия, принимают несколькими ультразвуковыми преобразователями и преобразуют в ультразвуковые сигналы, образующие основу неразрушающей визуализации ультразвуковой дефектоскопии, при которой:

а) n ультразвуковых преобразователей располагают в трехмерном распределении вокруг изделия в виде стержня, перемещаемого по производственной линии, и первый ультразвуковой преобразователь или первую группу из i ультразвуковых преобразователей активируют, чтобы реализовать акустическое облучение с образованием первого ультразвукового поля или первых i ультразвуковых полей внутри изделия бесконтактным образом или посредством иммерсионной среды взаимодействия, при этом i<n.

N ультразвуковых преобразователей расположены в равномерном пространственном распределении вокруг изделия при их линейном расположении, при этом эти ультразвуковые преобразователи разнесены один от другого на расстояние, которое превышает половину длины ультразвуковой волны.

b) Ультразвуковые волны, отраженные внутри изделия, принимают m ультразвуковыми преобразователями, расположенными в трехмерном распределении вокруг изделия, и генерируют m ультразвуковых временных сигналов, содержащих информацию о распределении амплитуды во времени. Приемные апертуры m ультразвуковых преобразователей по меньшей мере частично перекрываются одна с другой в пространственном отношении попарно между двумя соседними ультразвуковыми преобразователями.

c) m ультразвуковых временных сигналов сохраняют.

d) Другой ультразвуковой преобразователь или другую группу из i ультразвуковых преобразователей, которые отличаются от первой группы по меньшей мере одним ультразвуковым преобразователем, активируют и выполняют стадии b) и c), при этом активация, прием и сохранение соответствуют одному циклу,

e) Этап d) выполняют повторяющимся образом, при этом другой ультразвуковой преобразователь или другую группу из i ультразвуковых преобразователей выбирают соответствующим образом, а именно так, чтобы другой ультразвуковой преобразователь или другая группа из i ультразвуковых преобразователей отличались от уже выбранного ультразвукового преобразователя или от уже выбранной группы из i ультразвуковых преобразователей.

f) Объемные изображения, B-изображения, и/или A-изображения реконструируют при использовании сохраненных ультразвуковых временных сигналов, которые зарегистрированы и сохранены для последовательности нескольких циклов, при этом сумма указанных ультразвуковых временных сигналов представляет акустическое поле изделия, полученное всеми n ультразвуковыми преобразователями. Несколько B-изображений формируют и объединяют послойно для получения объемного изображения.

Таким образом, ультразвуковые преобразователи как передают, так и принимают ультразвуковые волны, причем n=m, а акустическое облучение с образованием ультразвукового поля или i ультразвуковых полей выполняют циклическим образом, и тем, что акустическое облучение выполняют в каждом цикле с разного направления в пространстве. Различие между указанными направлениями в пространстве, вдоль которых выполняется акустическое облучение в ходе цикла, для двух последовательных акустических облучений так велико, насколько это возможно.

Циклическое акустическое облучение с образованием ультразвуковых полей внутри изделия от не более, чем n ультразвуковых преобразователей выполняют за период времени, в течение которого изделие, перемещаемое в продольном направлении, рассматривается как квазистационарное.

Недостатком этого способа является его низкая разрешающая способность, определяемая шириной главного лепестка синтезированной диаграммы направленности нескольких ультразвуковых преобразователей и низкое отношение сигнал/шум.

Задачей изобретения является улучшение четкости визуализации полученного изображения контролируемого изделия за счет увеличения разрешающей способности, для раздельной визуализации нескольких рядом расположенных дефектов, а также увеличение отношения сигнал/шум.

Поставленная задача решена за счет того, что так же, как в прототипе, способ визуализации ультразвуковой дефектоскопии трехмерного изделия заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно В-изображение, превышает половину длины ультразвуковой волны, производят циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, преобразование в цифровые коды полученных электрических сигналов, их сохранение, обработку цифровых кодов, реконструкцию изображения и его визуализацию путем объединения послойно нескольких В-изображений.

Согласно изобретению, после преобразования принятых ультразвуковых волн в электрические сигналы осуществляют их усиление и преобразование в цифровые коды, проводят когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента. Сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки. Затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей. Сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации.

За счет использования произведения сохраненных цифровых кодов при когерентной обработке сужается ширина главного лепестка синтезированной диаграммы направленности пьезопреобразователей антенной решетки. Это улучшает четкость визуализации полученного изображения контролируемого изделия за счет увеличения разрешающей способности, при которой возможна раздельная визуализация нескольких рядом расположенных дефектов, а также увеличивает отношение сигнал/шум.

На фиг.1 представлено устройство, реализующее предлагаемый способ.

На фиг.2 показаны результаты визуализации ультразвуковой дефектоскопии колесной оси, где а) - полученные с использованием способа-прототипа, б) - полученные заявляемым способом; причем на а) и б) слева представлены томографические изображения продольного сечения колесной оси по диаметру, а справа - томографические изображения поперечного сечения колесной оси.

На фиг.3 представлены результаты визуализации ультразвуковой дефектоскопии двух точечных дефектов, расположенных на расстоянии 2,4 мм друг от друга, где а) - полученные с использованием способа-прототипа, б) - полученные предлагаемым способом.

Предложенный способ визуализации ультразвуковой дефектоскопии трехмерного изделия осуществлен с помощью устройства, содержащего микроконтроллер 1 (фиг.1), связанный с входом многоканального генератора 2, к выходу которого подключена антенная решетка 3, которая связана с первым входом многоканального усилителя 4, второй вход которого соединен с микроконтроллером 1. Выход многоканального усилителя 4 подключен к многоканальному аналого-цифровому преобразователю 5 (многоканальный АЦП), выход которого соединен с первым входом первого оперативного запоминающего устройства 6 (ОЗУ1), выход которого соединен с входом блока умножения 7, выход которого подключен к входу второго оперативного запоминающего устройства 8 (ОЗУ2), выход которого связан с микроконтроллером 1, который связан с блоком управления 9, выход которого связан со вторым входом первого оперативного запоминающего устройства 6 (ОЗУ1). Блок индикации 10 связан с микроконтроллером 1, который подключен к персональному компьютеру 11.

Микроконтроллер 1 может быть выбран любым, например, ATMEGA64, фирмы ATMEL. Многоканальный генератор 2 может быть выполнен на микросхемах, имеющих импульсный ток коллектора не менее 2А и выходное напряжение 90 В, например, STHV748. Антенная решетка 3 является набором 16 или более пьезопреобразователей, располагаемых линейно или матрично, например, OLYMPUS 2L16-A1. Многоканальный усилитель 4 с многоканальным аналого-цифровым преобразователем 5 выполнен по типовой схеме, например, на микросхемах AD9272. Первое оперативное запоминающее устройство 6 (ОЗУ1), объемом не менее 64 Кб, выполнено совместно с блоком управления 9, например, на микросхемах IDT72V293. Блок умножения 7 может быть выполнен на микросхемах ПЛИС, например, XILINX SPARTAN-3 XC3S1000-4FG676. Блок индикации 10 может быть выполнен на матричной панели или на мониторе персонального компьютера, например, BENQ G2320HDB. Второе оперативное запоминающее устройство 8 (ОЗУ2), объемом не менее 100 МГб, может быть выполнено, например, на модулях памяти, используемых в персональных компьютерах, 1ГБ DDR SDRAM PC3200, 400МГц. Персональный компьютер может быть любым, например, Acer "Revo RL70".

При контроле колесной оси размещали на ее торце антенную решетку 3, содержащую 32 пьезопреобразователя, расположенных матрично. После выдачи разрешения микроконтроллера 1 на работу блока управления 9 первого запоминающего устройства 6 (ОЗУ1) и многоканального генератора 2 многоканальный генератор 2 поочередно формировал импульсы возбуждения для каждого пьезопреобразователя антенной решетки 3. Пьезопреобразователи антенной решетки 3 поочередно излучали ультразвуковые волны в колесную ось, а прием ультразвуковых волн и их преобразование в электрические сигналы осуществляли одновременно всеми преобразователями антенной решетки 3. Причем поочередное излучение осуществлялось циклически. Полученные электрические сигналы усиливали многоканальным усилителем 4, преобразовывали в цифровые коды в многоканальном аналого-цифровом преобразователе 5 и сохраняли в первом оперативном запоминающем устройстве 6 (ОЗУ1). Данные из первого оперативного запоминающего устройства 6 (ОЗУ1) подвергали когерентной обработке в блоке умножения 7, которая заключалась в следующем: разбивали колесную ось на локальные области, которые рассматривали в качестве локального сосредоточенного отражающего элемента (6489600 при следующих размерах объекта контроля: длина - 900 мм, диаметр - 156 мм), и сохраненные цифровые коды сдвигали назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области колесной оси до соответствующего пьезопреобразователя антенной решетки 3 [Й. Й. Крауткремер, "Ультразвуковой контроль материалов: справочное издание", М., "МЕТАЛЛУРГИЯ", 1991, 753 с.].

Время распространения ультразвуковой волны до каждой локальной области определяли из выражения:

, (1)

где i - номер локальной области;

- координаты i-й локальной области;

- координаты преобразователя с номером d;

С - скорость распространения ультразвуковой волны.

Расчет времени распространения ультразвуковой волны до каждой локальной области осуществлялся заранее на персональном компьютере в соответствии с параметрами антенной решетки и объекта контроля. Полученные данные использовались в блоке умножения 7.

Затем перемножали цифровые коды, сдвинутые во времени соответственно для каждой из локальных областей:

, (2)

где - цифровой код электрического сигнала, соответствующий рассчитанному времени по формуле (1);

n - количество преобразователей в антенной решетке.

Полученные данные для каждой локальной области сохраняли во втором оперативном запоминающем устройстве 8 (ОЗУ2) и через микроконтроллер 1 передавали в блок индикации 10 для отображения или в персональный компьютер 11. Реконструкция изображения и его визуализация осуществлялась путем объединения послойно нескольких В-изображений.

Сравнение результатов визуализации ультразвуковой дефектоскопии колесной оси, полученных с использованием способа-прототипа, показанного на фиг.2 а) и предлагаемого способа показывают, что при использовании заявляемого способа для визуализации ультразвуковой дефектоскопии трехмерного изделия увеличилось отношение сигнал/шум, что показано на фиг.2 б).

Сравнение результатов визуализации ультразвуковой дефектоскопии двух точечных дефектов колесной оси, расположенных на расстоянии 2,4 мм друг от друга, полученных с использованием способа-прототипа и предлагаемого способа, показывает, что при использовании способа-прототипа нельзя различить два дефекта раздельно (фиг.3 а)), а предлагаемый способ позволяет их видеть раздельно (фиг.2 б)), следовательно увеличилась разрешающая способность.

Формула изобретенияСпособ визуализации ультразвуковой дефектоскопии трехмерного изделия, включающий размещение пьезопреобразователей антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно В-изображение, превышает половину длины ультразвуковой волны, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, преобразование в цифровые коды полученных электрических сигналов, их сохранение, обработку цифровых кодов, реконструкцию изображения и его визуализацию путем объединения послойно нескольких В-изображений, отличающийся тем, что после преобразования принятых ультразвуковых волн в электрические сигналы осуществляют их усиление и преобразование в цифровые коды, проводят когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента, сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки, затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации.
СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ
СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ
СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Showing 141-147 of 147 items.
20.04.2016
№216.015.342a

Сверло одностороннего резания с твердосплавным стеблем

Изобретение относится к машиностроению и может быть использовано при сверлении глубоких отверстий малых диаметров. Сверло содержит стебель из твердого сплава, соединенный посредством цапфы с хвостовиком из стали. В стебле выполнены наружный V-образный прямой канал и внутренний прямой канал...
Тип: Изобретение
Номер охранного документа: 0002581541
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3c6d

Линейный индукционный ускоритель

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных...
Тип: Изобретение
Номер охранного документа: 0002583039
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.6e88

Устройство компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит два независимых канала, каждый из которых содержит генератор ультразвуковых сигналов,...
Тип: Изобретение
Номер охранного документа: 0002596907
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7778

Способ компенсации погрешности измерения ультразвукового локатора

Использование: для измерения глубины скважин посредством ультразвукового локационного устройства. Сущность изобретения заключается в том, что способ компенсации погрешности измерения ультразвукового локатора включает излучение, прием ультразвуковых сигналов и измерение временных интервалов...
Тип: Изобретение
Номер охранного документа: 0002599602
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.b0de

Способ установления состояния предразрушения конструкционного изделия

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции....
Тип: Изобретение
Номер охранного документа: 0002613486
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.cd9c

Способ неразрушающего контроля шероховатости поверхностного слоя металла

Предлагаемое изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Способ неразрушающего контроля шероховатости поверхностного слоя металла заключается в измерении термоЭДС, возникающей...
Тип: Изобретение
Номер охранного документа: 0002619798
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.de0b

Устройство для неразрушающего контроля шероховатости поверхностного слоя металла

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Устройство для неразрушающего контроля шероховатости поверхностного слоя металла содержит нагреватель с возможностью теплового...
Тип: Изобретение
Номер охранного документа: 0002624787
Дата охранного документа: 06.07.2017
Showing 151-160 of 256 items.
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1195

Свч генератор с виртуальным катодом коаксиального типа

Изобретение относится к технике СВЧ и может быть использовано для генерации мощных импульсов электромагнитного излучения сильноточными электронными пучками. СВЧ-генератор с виртуальным катодом коаксиального типа содержит источник высокого напряжения (1), отрицательный электрод которого соединен...
Тип: Изобретение
Номер охранного документа: 0002535924
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.2267

Способ измерения тока в проводнике с помощью герконов

Изобретение относится к измерительной технике и может быть использовано для измерения токов в электроустановках. Способ измерения тока в проводнике с помощью герконов заключается в том, что два геркона с нормально разомкнутыми контактами устанавливают вблизи проводника. Настраивают их так,...
Тип: Изобретение
Номер охранного документа: 0002540260
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2268

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения rhx iny

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из...
Тип: Изобретение
Номер охранного документа: 0002540261
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22c6

Пленкообразующее вещество на основе нефтеполимерной смолы

Изобретение относится к технологии полимеров и может найти применение в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Пленкообразующее вещество на основе нефтеполимерной смолы включает озонированную нефтеполимерную смолу, при этом озонированная нефтеполимерная...
Тип: Изобретение
Номер охранного документа: 0002540355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231d

Способ измерения фоновых концентраций веществ в болотных водах

Изобретение относится к гидрохимии болот и может быть использовано для измерения фоновых концентраций веществ в болотных водах. Сущность: выделяют однородные участки болота на основе анализа глубин торфяной залежи и болотных фитоценозов. Измеряют фоновую концентрацию вещества в болотных водах...
Тип: Изобретение
Номер охранного документа: 0002540442
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231e

Способ определения места обрыва на воздушной линии электропередачи

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов...
Тип: Изобретение
Номер охранного документа: 0002540443
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231f

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002540444
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23ea

Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья

Изобретение относится к теплоэнергетике и может быть использовано для автономного энергообеспечения малых городов, поселков городского типа и сельских поселений. Энергоустановка содержит корпус (1), покрытый теплоизоляцией (2). Внутри корпуса (1) размещена газификационная печь (3) в виде сосуда...
Тип: Изобретение
Номер охранного документа: 0002540647
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.243f

Ячеистый теплозвукоизоляционный материал

Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения...
Тип: Изобретение
Номер охранного документа: 0002540732
Дата охранного документа: 10.02.2015
+ добавить свой РИД