×
10.11.2014
216.013.0485

Результат интеллектуальной деятельности: СПОСОБ И УСТАНОВКА ДЛЯ КОНВЕРСИИ МОНОКСИДА УГЛЕРОДА И ВОДЫ В ДИОКСИД УГЛЕРОДА И ВОДОРОД С УДАЛЕНИЕМ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО ПОЛУЧАЕМОГО ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002532555
Дата охранного документа
10.11.2014
Аннотация: Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или водорода, характеризуется тем, что в качестве первого растворителя используют сухой метанол для поглощения моноксида углерода с одновременным образованием метилформиата и в качестве второго растворителя используют воду в области высвобождения получаемого газа, чтобы избежать потерь водорода с потоком диоксида углерода. Изобретение обеспечивает высокую конверсию при связывании моноксида углерода. 3 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к реакции сдвига моноксида углерода для конверсии моноксида углерода и воды в диоксид углерода и водород, особенно для промышленного использования.

Эта реакция, соответствующая уравнению

является одной из самых важных реакций в химической промышленности. Сейчас эта реакция также стала интересной для электростанций, использующих ископаемое топливо. Основой этого является существующая тенденция к горению с низким уровнем образующегося СО; при сжигании топлива для этих электростанций. В соответствии со способом предварительного сжигания моноксид углерода должен быть конвертирован в диоксид углерода согласно вышеупомянутому уравнению (1) перед горением, чтобы отделить весь углерод в форме диоксида углерода. Таким образом, энергия моноксида углерода передается (сдвигается к) водороду, который может использоваться в газовых турбинах. Однако для удаления продуктов диоксида углерода и также водорода выделение из газовой фазы является чрезвычайно энергозатратным способом.

В способах, общепринятых до настоящего времени, реакцию сдвига моноксида углерода и удаление диоксида углерода выполняют, по существу, в отдельных подстадиях. Во-первых, реакцию сдвига моноксида углерода выполняют в газовой фазе. Диоксид углерода затем отделяют в дальнейшей стадии способа. Типичным примером удаления является скруббер Ректизол (Rectisol scrub), в котором диоксид углерода абсорбируют охлажденным метанолом. Соответственно, низкие температуры необходимы здесь, чтобы отделить диоксид углерода, и большое количество энергии необходимо для охлаждения, что снижает общую эффективность электростанции.

Европейский патент ЕР 0299995 В1 описывает способ выполнения реакции сдвига моноксида углерода, причем реакция протекает в жидкой фазе. В то же самое время может быть реализовано удаление образовавшегося диоксида углерода. Это относится особенно к примеру 6 патентного документа, а также к фиг. 2. Здесь метанол, содержащий воду, используют в качестве растворителя. Показатель рН метанола повышают добавлением карбоната, например карбоната калия. Однако, есть два важных пункта в этом патентном документе, которые делают использование сомнительным: не гарантируют, что газообразный исходный материал, моноксид углерода (СО), может быть превращен достаточно быстро в жидкую фазу для промышленного использования с целью последующей конверсии в формиат. Кроме того, ожидается значительная потеря водорода в отделяемый поток диоксида углерода из-за относительно высокой растворимости в используемом растворителе.

Проблемой, подлежащей решению, является выполнение реакции сдвига моноксида углерода в улучшенном варианте с получением газообразных продуктов, водорода и диоксида и отделением, по меньшей мере, одного из них.

Улучшенный вариант реакции сдвига моноксида углерода в жидкой фазе с одновременным удалением, по меньшей мере, одного продуктового газа достигается совокупностью признаков соответствующих пунктов формулы изобретения.

Изобретение описывает способ, в котором реакцию сдвига моноксида углерода выполняют в жидкой фазе. В способе используют два различных растворителя. Сухой метанол используют в качестве первого растворителя, а воду используют в качестве второго растворителя. Абсорбция моноксида углерода сухим метанолом может применяться преимущественно, так как при использовании соответствующего катализатора одновременно происходит образование метилформиата. Таким образом, достигается высокая конверсия при связывании моноксида углерода.

Преимущественно, способ имеет место в сухом метаноле в качестве первого растворителя в комбинации с растворенным метоксидом натрия в качестве катализатора. Кинетика связывания моноксида углерода и конверсии моноксида углерода может проводиться экономно, как при промышленном получении муравьиной кислоты.

Метилформиат разлагается гидролитически или в присутствии основного катализатора до муравьиной кислоты и метанола. Образующаяся муравьиная кислота депротонируется до формиата в регулируемой основной области рН так, что рН падает течение реакции.

В результате первый растворитель, то есть сухой метанол, и второй растворитель, то есть вода, каждый течет в своем контуре, выделение продуктовых газов, диоксида углерода и водорода может быть произведено без больших потерь водорода в диоксид углерода или в поток диоксида углерода. Это означает, что особенно в результате разделения на два разных контура растворителей индивидуальные продуктовые газы действительно не входят в область или в поток другого газа в каждом случае.

Есть физический раздел между образованием двух газов, водорода и диоксида углерода, и удаление этих продуктовых газов становится возможным одновременно.

Два продуктовых газа, водород и диоксид углерода, производят в водной, а не метанольной среде, как в предшествующем уровне техники согласно европейскому патенту ЕР 0299995 В1. В противном случае результатом были бы большие потери водорода в полученном диоксиде углерода, так как водород значительно более растворим в метаноле, чем в воде.

Продуктовый газ водород может преимущественно быть произведен каталитическим разложением формиата, причем дополнительно образуется гидрокарбонат.

Продуктовый газ диоксид углерода может преимущественно быть получен из гидрокарбоната в другом месте в ходе процесса в результате увеличения температуры или снижения давления. Образующийся карбонат реагирует с водой, что приводит к увеличению рН.

Есть физический раздел между образованием двух газов, водорода и диоксида углерода, и удаление этих продуктовых газов становится возможным одновременно.

Настоящее изобретение имеет значительно измененную структуру процесса по сравнению с процессами, известными до настоящего времени для выполнения реакции сдвига моноксида углерода. В изобретении растворители, метанол и воду, используют в двух отдельных контурах.

Начальные стадии способа по изобретению выполняют способом, подобным способу промышленного производства муравьиной кислоты. Различие состоит в том, что чистый моноксид углерода не должен быть подан в способ, но вместо этого, например, синтез-газ, имеющий значительное количество моноксида углерода, подают в высушенной форме в способ. Сушка синтез-газа необходима, так как первые стадии способа имеют место в среде метанола.

Протекание реакции сдвига СО в жидкой фазе имеет энергетическое преимущество перед реакцией сдвига СО, выполняемой в газовой фазе, так как вода не должна испаряться при выполнении реакции. Это преимущество становится еще значительней, когда реакцию сдвига СО выполняют в присутствии избытка воды, что часто имеет место.

Главная цель состоит в том, чтобы получить водный раствор муравьиной кислоты. Различие между режимом работы в производстве муравьиной кислоты и режимом работы согласно изобретению является то, что в производстве муравьиной кислоты, концентрация муравьиной кислоты по существу представляет проблему, которая должна быть решена. Однако эта подстадия не является необходимой для целей настоящего изобретения. Скорее муравьиная кислота депротонируется в разбавленной форме, и образующийся формиат расщепляется каталитически. Сложный эфир, в частности метилформиат, образуется в качестве промежуточного соединения и отделяется от растворителя метанола и разлагается на метанол и муравьиную кислоту. На дальнейшей стадии способа метанол затем регенерируют, а диоксид углерода, который образуется при разложении гидрокарбоната, в то же самое время отделяют в дальнейшем потоке. Производство водорода происходит в дальнейшем объеме реакции в процессе реакции формиата с водой с получением гидрокарбоната и водорода. Диоксид углерода и водород, таким образом, образуются отдельно в двух различных стадиях способа и в каждом случае отделяются.

Пример, который не ограничивает изобретение, описан ниже при помощи сопутствующего чертежа.

Чертеж показывает схему способа для реакции сдвига моноксида углерода, использующую три реактора 1, 3, 5 и две колонны 2, 4, причем сухой синтез-газ подают через питающую линию 6, и продуктовые газы, диоксид углерода и водород, образуются и отделяются в различных местах в способе, и также первый контур 21 для первого растворителя, то есть сухого метанола, и второй контур 22 для второго растворителя, то есть воды.

Реакция сдвига моноксида углерода и также подреакции, имеющие место в полном способе, описаны ниже.

Общая реакция сдвига моноксида углерода:

Абсорбция моноксида углерода жидкой фазой с получением метилформиата может быть представлена следующим уравнением:

Так как синтез-газ вводят в сухой метанол, вода не присутствует как растворитель в этой точке. Синтез-газ состоит, по существу, из моноксида углерода и водорода. В результате разделения растворителей на сухой метанол и воду, потери водорода, например, в поток диоксида углерода предотвращаются с самого начала.

Образующийся метилформиат каталитически разлагается па муравьиную кислоту и метанол, что приравнивается к гидролизу.

Образующаяся муравьиная кислота превращается в результате отрыва протона в формиат.

Водород производят каталитическим разложением формиата на водород и гидрокарбонат.

Высвобождение диоксида углерода в месте, отличающемся от того места, где высвобождается водород, протекает согласно следующему уравнению:

Образующийся карбонат реагирует с водой так, что рН снова увеличивается до первоначального значения.

Уравнения (2)-(7) вместе дают уравнение (1). Настоящая концепция базируется только частично на производстве муравьиной кислоты. Однако в сочетании с областью использования реакции сдвига моноксида углерода на электростанциях с удалением диоксида углерода идеально полное и селективное отделение углеродсодержащих компонентов от синтез-газа скорее, чем синтез муравьиной кислоты является важным аспектом.

Реакция сдвига моноксида углерода в жидкой фазе протекает через водный раствор муравьиной кислоты. Прямое образование растворенной муравьиной кислоты из газообразного моноксида углерода протекает согласно следующему уравнению реакции:

Проблемой, связанной с уравнением 8, является то, что реакция имеет очень низкую равновесную конверсию в обычных условиях. Эта реакция не может, таким образом, использоваться экономично без принятия дополнительных мер. Способ, описанный в ЕР 0299995 В1 для преодоления этого равновесного ограничения, использует депротонирование муравьиной кислоты посредством относительно высоких значений рН, чтобы удалить муравьиную кислоту из равновесия. Таким образом, общее содержание моноксида углерода может, в принципе, быть перенесено из газовой фазы в жидкую фазу в форме растворенного формиата. Однако из-за использования водного метанола в качестве растворителя этот подход приводит к большим потерям водорода, причем количество водорода, уходящего в поток диоксида углерода, и затраты энергии являются неэкономично высокими.

Кроме того, найдено, что простая структура процесса, как известно, например, из ЕР 0299995 В1, не может дать удовлетворительных результатов из-за сложного сочетания химических реакций. Когда применяют растворитель, предложенный в патенте, то есть метанол, имеющий низкое содержание воды, значительная доля водорода растворяется в растворителе. Эта нежелательная утечка водорода в поток диоксида углерода может быть предотвращена только посредством использования дополнительного растворителя, который течет во втором контуре.

Другой режим работы, в котором используют только растворитель воду вместо метанола, не привел к экономичной системе. Хотя потеря водорода может быть снижена до нескольких частей на тысячу от полного содержания водорода (несколько десятых долей процента) в этом режиме работы, количестве требуемой воды, даже если бы она циркулировала, было бы чрезвычайно высоким. Мерой этого является количество диоксида углерода, подлежащее отделению, что в комбинации с растворимостью газа в воде определяет расход воды. Этот большой поток воды приводит к необычно высокому расходу энергии, так как диоксид углерода отделяют, повышая температуру. Альтернативное удаление посредством снижения давления приводило бы к очень высоким рабочим давлениями и аналогично высокому расходу энергии.

Чтобы преодолеть равновесное ограничение уравнения (8), возможен особый подход. Этот подход не включает прямое производство раствора формиата. Скорее метилформиат образуется в среде метанола согласно уравнению (2). В дальнейшем течении реакции метилформиат гидролизуется и превращается в раствор формиата согласно уравнению (3). Дополнительные стадии способа для этой последовательной процедуры увеличивают полный расход энергии только незначительно. В целом таким образом возможно достигнуть экономичного удаления диоксида углерода, одновременно выполняя реакцию сдвига СО посредством этого способа. Если, кроме того, безводный метанол используют в качестве первого растворителя, достигается высокая конверсия связывания моноксида углерода, так как моноксид углерода реагирует с метанолом с получением метилформиата.

Как показано на чертеже, несколько реакторов и колонн применяют для выполнения способа сдвига моноксида углерода.

Первый реактор 1 используют для поглощения моноксида углерода с одновременным получением метилформиата согласно уравнению (2). В последующей первой колонне 2 отделяют метилформиат. В последующей второй реакции 3 метилформиат разлагают гидролитически согласно уравнению (3) на метанол и муравьиную кислоту. В последующей второй колонне 4 диоксид углерода отделяют согласно уравнению (6), причем карбонат и гидрокарбонат способны реагировать согласно уравнениям (6) и (7). В третьем реакторе 5 водород отделяют каталитически от формиата с получением гидрокарбоната.

Чертеж может быть разделен грубо на метанольную область и водную область. На основе прерывистой разделительной линии 24, проходящей вертикально на чертеже между первой колонной 2 и вторым реактором 3, метанольная область находится слева от линии, а водная область находится справа от линии.

В метанольной области сухой синтез-газ предпочтительно подают по питающей линии 6 в первый реактор 1. Синтез-газ высушивают так, чтобы никакая вода не присутствовала перед фактическим способом. Кроме улучшенного отделения диоксида углерода от водорода, сушка синтез-газа необходима, чтобы предотвратить гидролиз используемого катализатора метоксида. Далее метанол и соответствующий катализатор вводят по линиям 7 и 14. Линия 19 служит для рециркуляции метанола в первый реактор 1 из второй колонны 4. Метилформиат и метоксид, которые растворены в метаноле, подают по линии 13 из первого реактора 1 в первую колонну 2. Первый контур 21 для растворителя метанола течет преимущественно по линиям 14 и 13, причем контур замыкается через первую колонну 2, кубовый материал которой поступает в линию 14. Поток 12 необходим, чтобы выгружать нежелательные твердые частицы, которые могут образовываться при разложении катализатора. Этот первый контур 21 для сухого метанола гарантирует, что включение водной фазы по существу предотвращено. Это гарантирует оптимальное поглощение моноксида углерода.

Кроме того, первая колонна 2 расположена в метанолыюй области. Здесь выполняют разделение материала, причем метилформиат отделяют и подают во второй реактор 3. Кроме того, только метилформиат отгоняют из этой первой колонны 2, а метанол и диоксид углерода дополнительно отгоняют из второй колонны 4, в то время как высококипящие растворители этих двух упомянутых контуров удаляют из соответствующих кубов. Полученным преимуществом является уменьшение общего расхода энергии.

В водной области, соответствующей правой части чертежа, разложение метилформиата согласно уравнению (3) сначала выполнят во втором реакторе 3. Продукты, метанол и муравьиную кислоту, подают по линии 15 во вторую колонну 4. Из второй колонны 4 водную муравьиную кислоту, которая может в этой точке уже присутствовать в депротонированной форме как формиат, подают по линии 16 в третий реактор 5, метанол подают по линии 19 в первый реактор 1, а непрореагировавший метилформиат подают по линии 18 во второй реактор 3. В третьем реакторе 5 водород, во-первых, образуется и удаляется, и во-вторых, гидрокарбонат в водном растворе рециркулируют во второй реактор 3. Второй контур 22, по существу, представляет линию 17, второй реактор 3, линию 15, линию 16 и третий реактор 5, снова соединенный по линии 17. Этот водный контур имеет преимущество в том, что водород только незначительно растворяется и удаляется в месте, в котором он производится.

Линия 8 служит для подачи воды и соответственно достигает водной области. Линия 9 служит для выгрузки газов, которые инертны в реакции, то есть газов, которые не реагируют в первом реакторе 1, причем водород может присутствовать.

В первой колонне 2 образующийся метилформиат отгоняют. Затрата энергии здесь является приемлемой, так как образующийся метилформиат кипит при относительно низкой температуре. При атмосферном давлении точка кипения составляет только 32°С. Метанол, остающийся при перегонке, непрерывно рециркулируют, по существу, по линии 14 в предыдущий первый реактор 1. Возможные продукты разложения катализатора кристаллизуются здесь и удаляются из процесса. Например, катализатор, метоксид, может реагировать с любыми следами воды с получением метанола и гидроксида. Гидроксиды обычно только очень умеренно растворимы в метаноле, так что они осаждаются в этой точке и могут быть удалены без проблем из метанола. Вследствие этой возможной реакции разложения должны быть приняты меры, чтобы гарантировать, что подаваемый газ, содержавший моноксид углерода, является безводным. С определенной вероятностью невозможно заменить метоксид в качестве каталитически активного вещества на менее чувствительное к гидролизу вещество. Очень сильный нуклеофил требуется для реакции с моноксидом углерода, что автоматически означает, что вещество является чувствительным к гидролизу. Кроме того, другие алкоксиды или другие сильные органические основания неприменимы, так как при переэтерификации они образовывали бы сложные эфиры, имеющие более высокие точки кипения вместо метилформиата, или в автоматически происходящих реакциях оснований с кислотами давали бы спирты или органические кислоты, имеющие точку кипения выше, чем точка кипения метанола.

Следствием этого был бы увеличенный расход энергии в колоннах. Метоксиды являются единственными веществами, которые образуют нужные сложные эфиры при переэтерификации, такие, что эта неизбежная реакция не может иметь отрицательного воздействия из-за образования более высококипящих сложных эфиров.

В то время как первый растворитель в первых двух аппаратах, то есть первом реакторе 1 и первой колонне 2, является сухим метанолом, водный раствор присутствует в последующей второй реакции 3. Здесь сложный эфир гидролизуется, обычно в 5-кратном избытке воды, причем эта реакция обычно протекает в присутствии кислотного или основного катализатора. Вариант с основным катализатором является более приемлемым, так как муравьиная кислота, которая образуется при гидролизе, немедленно депротонируется в формиат.

Затем следует вторая колонна 4, и из этой колонны негидролизованный сложный эфир и метанол, который образуется при гидролизе, рециркулируют в соответствующие реакторы. Кроме того, эта вторая колонна 4 подходит для отгона растворенного диоксида углерода, а часть гидрокарбоната и даже до некоторой степени карбоната превращается в газообразный диоксид углерода посредством зависящего от температуры равновесия в реакции между карбонатом, гидрокарбонатом и диоксидом углерода. Удаление указанных веществ перегонкой приводит к водному раствору формиата. Формиат вводят в третий реактор 5, в котором формиат разлагается в каталитической реакции, и образуется водород.


СПОСОБ И УСТАНОВКА ДЛЯ КОНВЕРСИИ МОНОКСИДА УГЛЕРОДА И ВОДЫ В ДИОКСИД УГЛЕРОДА И ВОДОРОД С УДАЛЕНИЕМ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО ПОЛУЧАЕМОГО ГАЗА
Источник поступления информации: Роспатент

Showing 381-390 of 1,427 items.
10.06.2015
№216.013.517f

Короткозамкнутый ротор с пусковым стержнем

Изобретение относится к короткозамкнутому ротору для асинхронной машины, который содержит пусковые стержни для улучшения пускового режима, а также к способу изготовления подобного короткозамкнутого ротора. Технический результат заключается в улучшении режима пуска и повышении КПД....
Тип: Изобретение
Номер охранного документа: 0002552384
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.522c

Устройство для выделения ферромагнитных частиц из суспензии

Изобретение относится к устройству для выделения ферромагнитных частиц из суспензии с размолотой рудой. Устройство для выделения ферромагнитных частиц из суспензии с размолотой рудой содержит пропускающий поток трубчатый реактор с входом и выходом и средствами для создания магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002552557
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.54f9

Схема управления для электромагнитного реле

Схема (10) управления для электромагнитного реле имеет катушку (11) реле и переключающие контакты с первым устройством (13а) переключения, размещенным между первым выводом катушки (11) реле и первым источником (12а) напряжения, вторым устройством (13b) переключения, размещенным между вторым...
Тип: Изобретение
Номер охранного документа: 0002553274
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.56c1

Способ и устройство для определения локальной пространственной протяженности фазы минерала ценного материала в породе

Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и при этом минерал ценного материала имеет более высокую плотность,...
Тип: Изобретение
Номер охранного документа: 0002553739
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56c3

Способ и устройство для увеличения добычи на месторождении

Изобретение относится к способу и устройству для повышения добычи на месторождении, содержащем породу, которая включает в себя по меньшей мере один раскрываемый путем размельчения породы минерал ценного материала и по меньшей мере один другой минерал, причем минерал ценного материала имеет...
Тип: Изобретение
Номер охранного документа: 0002553741
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d8

Компонент из жаропрочного сплава и суспензионная композиция для компонента из жаропрочного сплава

Изобретение относится к суспензиям для алюминизации компонентов из жаропрочного сплава и может быть использовано для изготовления деталей, работающих в условиях воздействия горячих коррозионно-активных газов, например газотурбинных компонентов. Суспензия содержит органическое связующее и...
Тип: Изобретение
Номер охранного документа: 0002553762
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.575c

Способ синтеза фуллерида металлического нанокластера и материал, включающий фуллерид металлического нанокластера

Изобретение относится к способу синтеза фуллерида металлического нанокластера и к материалу, включающему фуллерид металлического нанокластера. Способ синтеза фуллерида металлического нанокластера включает механическое сплавление металлических нанокластеров с размером частиц между 5 нм и 60 нм с...
Тип: Изобретение
Номер охранного документа: 0002553894
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.592a

Газотурбинный двигатель и способ эксплуатации газотурбинного двигателя

Газотурбинный двигатель содержит ротор, радиально наружную и внутреннюю статорные части, между которыми проходит воздушный канал компрессора, кольцевой зазор между ротором и радиально внутренней статорной частью, а также выпускной трубопровод. Ротор включает роторную часть подшипника,...
Тип: Изобретение
Номер охранного документа: 0002554367
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59cf

Способ и устройство для безопасной передачи данных

Изобретение относится к способу памяти данных для хранения компьютерного программного продукта и устройству для безопасной передачи данных. Технический результат заключается в повышении безопасности передачи данных. Устройство содержит блок (2) предоставления для предоставления соединений (DV)...
Тип: Изобретение
Номер охранного документа: 0002554532
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a7e

Транспортное средство с установкой водоснабжения и охлаждения

Изобретение относится к транспортному средству, в частности к рельсовому транспортному средству. Транспортное средство включает установку водоснабжения для потребителей (4, 5) воды и установку (1) охлаждения, которая имеет сливной трубопровод для отвода конденсационной воды, возникающей при...
Тип: Изобретение
Номер охранного документа: 0002554707
Дата охранного документа: 27.06.2015
Showing 381-390 of 943 items.
20.04.2015
№216.013.427f

Завихритель, камера сгорания и газовая турбина с улучшенным перемешиванием

Завихритель для перемешивания топлива и воздуха, расположенный в камере сгорания газотурбинного двигателя, содержит множество лопаток, расположенных в радиальном направлении вокруг центральной оси завихрителя, множество смесительных каналов для перемешивания топлива и воздуха. По меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002548521
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4300

Транспортное средство, снабженное компонентом, охлаждаемым с помощью массового потока охлаждающего воздуха

Изобретение относится к охлаждающим устройствам для транспортных средств. Транспортное средство снабжено по меньшей мере одним компонентом (K), который в целях охлаждения обдувается нагнетаемым с помощью по меньшей мере одного нагнетательного устройства, такого как вентилятор (L) или спойлер,...
Тип: Изобретение
Номер охранного документа: 0002548650
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.47c4

Способ управления двумя электрически последовательно включенными обратнопроводящими igbt полумостовой схемы

Изобретение относится к способу управления двумя электрически последовательно включенными IGBT (Т1, Т2) полумостовой схемы (2), на которой существует рабочее постоянное напряжение (U), причем эти обратнопроводящие IGBT (Т1, Т2) имеют три состояния переключения. В соответствии с изобретением...
Тип: Изобретение
Номер охранного документа: 0002549879
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.47c6

Способ и устройство для производства двух различных радиоактивных изотопов

Изобретение относится к средствам производства изотопов при помощи ускоренного пучка частиц. В заявленном способе ускоренный пучок частиц (11) направляют на первый исходный материал, содержащийся в мишенном блоке (15), в котором производят первый радиоактивный изотоп (19) посредством первой...
Тип: Изобретение
Номер охранного документа: 0002549881
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4896

Охлаждение сверхпроводящих машин

Изобретение касается устройства для охлаждения сверхпроводящих машин, включающего в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством и которая снабжена испарителем для испарения жидкого охлаждающего средства. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002550089
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48c7

Способ устранения неисправности в линии постоянного тока высокого напряжения, установка для передачи электрического тока по линии постоянного тока высокого напряжения и преобразователь переменного тока

Изобретение относится к области электротехники и может быть использовано в линиях постоянного тока высокого напряжения, к которой через автономный преобразователь подключена сеть переменного тока. Технический результат - повышение надежности устранения неисправности в линии постоянного тока...
Тип: Изобретение
Номер охранного документа: 0002550138
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48d8

Устройство и способ для измерения токов в подшипнике

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат -обеспечение улучшенной оценки токов подшипников. В способе и устройстве для измерения токов в подшипнике реализовано измерение токов подшипников без соприкосновения....
Тип: Изобретение
Номер охранного документа: 0002550155
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4970

Способ оценки для электродуговых разрядов и соответствующий испытательный стенд

Изобретение относится к способу оценки для электродуговых разрядов, которые возникают между внутренним кольцом подшипника и внешним кольцом подшипника для подшипника качения. Способ оценки электродуговых разрядов, которые возникают между внутренним кольцом (8) подшипника и внешним кольцом (9)...
Тип: Изобретение
Номер охранного документа: 0002550307
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49d8

Опорный цилиндр для самоусиливающегося гидравлического тормоза

Группа изобретений относится к области машиностроения, а именно к тормозным системам транспортных средств. Устройство содержит присоединения, одно из которых соединено с механизмом для ввода механической растягивающей или сжимающей нагрузки, другое присоединение выполнено с возможностью...
Тип: Изобретение
Номер охранного документа: 0002550411
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a0a

Сплав, защитный слой и конструктивный элемент

Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких...
Тип: Изобретение
Номер охранного документа: 0002550461
Дата охранного документа: 10.05.2015
+ добавить свой РИД