×
10.11.2014
216.013.0406

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОВОГО СЕНСОРА С НАНОСТРУКТУРОЙ И ГАЗОВЫЙ СЕНСОР НА ЕГО ОСНОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к изготовлению газовых сенсоров, предназначенных для детектирования различных газов. Предложен способ изготовления газового сенсора, в котором образуют гетероструктуру из различных материалов, в ней формируют газочувствительный слой, после чего ее закрепляют в корпусе сенсора, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Газочувствительный слой формируют в виде тонкой нитевидной наноструктуры (SiO)(SnO), где 20% - массовая доля SiO, а 80% - массовая доля компонента SnO, путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги с последующим отжигом. На поверхности подложки предварительно методом локального анодного окисления сформирована область шириной 1 мкм, глубиной 200 нм. Золь приготавливают в два этапа: на первом этапе смешивают тетраэтоксисилан (ТЭОС) и этиловый спирт (95%) в соотношении 1:1,046 при комнатной температуре и смесь выдерживают до 30 минут, а на втором этапе в полученный раствор вводят дистиллированную воду в соотношении 1:0,323; соляную кислоту (HCl) в соотношении 1:0,05; двухводный хлорид олова (SnCl·2HO) в соотношении 1:0,399, где за единицу принят объем ТЭОС, и перемешивают не менее 60 минут. Предложен также газовый сенсор с наноструктурой, изготовленный по предлагаемому способу. Технический результат - повышение чувствительности газового сенсора. 2 н.п. ф-лы, 4 ил.

Предлагаемое изобретение относится к измерительной технике и может быть использовано при изготовлении газовых сенсоров нового поколения, предназначенных для детектирования различных газов.

В настоящее время газовые сенсоры активно применяются практически во всех отраслях промышленности, транспорта, а также в сельском хозяйстве и медицине. Газовые сенсоры составляют основу для создания систем противопожарной и экологической безопасности. Наиболее распространены газовые сенсоры на основе полупроводниковых оксидов металлов, например оксида олова (SnO2). Механизм действия подобных устройств основан на изменении электропроводности полупроводников n-типа проводимости в ходе происходящих на их поверхности химических превращений, например взаимодействия детектируемого газа с хемосорбированным кислородом. Сенсоры на основе SnO2 характеризуются низкой стоимостью, хорошим временем отклика и рядом других преимуществ. Их типичными недостатками являются длительное время сброса показаний (вследствие конечного времени десорбции газов) и недостаточная селективность к детектируемым газам.

Известен способ анализа полупроводниковыми сенсорами газовой смеси, содержащей горючие газы, такие как CO и H2. В качестве газочувствительного слоя используется диоксид олова, допированный сурьмой. Полученные по данному изобретению газочувствительные пленки SnO2 обнаружили высокую чувствительность к H2 и CO в атмосферах O2/N2 и O2/N2/паров-H2O. Температурный интервал чувствительности сенсоров, полученных по этому способу, составляет 200-550°C [1].

Известно сенсорное устройство для детектирования CO, включающее изолирующую подложку с измерительными электродами, слой полупроводникового оксида и каталитический слой, содержащий один из следующих металлов - Pt, Rh, Pd на оксидном носителе и нагревательный элемент. Указанное устройство обеспечивает сравнительно высокую чувствительность к CO при умеренной температуре нагревательного элемента (120°C и ниже). Недостатками предложенного устройства являются низкая стабильность сенсора, вызванная деградацией структуры чувствительного слоя полупроводникового оксида.

Известно сенсорное устройство для индикации CO, в котором в качестве материала чувствительного элемента используется оксид олова с тонко диспергированной платиной, для создания оптимальной пористой структуры активного слоя используются добавки силикатов, таких как полевые шпаты и бентонит [3]. Достоинством устройства является возможность раздельного определения оксида углерода и водорода. Недостатком устройства является высокое электрическое сопротивление чувствительного слоя, что затрудняет измерение сенсорного сигнала и значительно усложняет конструкцию.

Известен способ сенсорного анализа газовой смеси, содержащей газы-восстановители (CO и H2) и O2. В качестве катализаторов для повышения чувствительности газочувствительного слоя на основе диоксида олова к CO и H2 используется RuCl3 и PtCl2. В способе показано, что оптимальные концентрации RuCl3 и PtCl2 в SnO2 для обнаружения CO и H2 составляют 1-5 мол.%. Ru и Pt, которые вводились в матрицу методом пропитки диоксида олова хлоридами этих элементов. Полученные пленки на основе данных веществ могут быть использованы в температурном интервале 200-350°C [4].

Наиболее близким по технической сущности к предлагаемому решению является способ изготовления чувствительного элемента газового сенсора по тонкопленочной технологии [5]. Он заключается в том, что образуют гетероструктуру из различных материалов (диэлектрическая подложка, контактные площадки из платины с одной стороны подложки, нагревателя с другой стороны), в которой формируют газочувствительный слой (пленка диоксида олова толщиной 50 и 100 нм с содержанием примеси сурьмы 1.5 ат. %). В качестве подложки используют пластины поликора толщиной 150 мкм. Контакты к слоям диоксида олова и нагреватель на обратной стороне формируют напылением платины с последующей фотолитографической гравировкой до нанесения пленок диоксида олова (SnO2). Сверхтонкие слои каталитической платины получают катодным напылением. Готовые образцы подвергают стабилизирующему отжигу на воздухе при 400°C в течение 24 часов. Недостатком такого способа является недостаточно высокая чувствительность к различным восстановительным газам (например, парам этилового спирта).

Техническим результатом изобретения является повышение чувствительности газового сенсора.

Это достигается тем, что в известном способе изготовления газового сенсора с наноструктурой, заключающемся в том, что образуют гетероструктуру из различных материалов, в которой формируют газочувствительный слой, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников, в соответствии с предлагаемым изобретением газочувствительный слой формируют в виде тонкой нитевидной наноструктуры (SiO2)20%(SnO2)80%, где 20% - массовая доля SiO2, а 80% - массовая доля компонента SnO2, путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния, на поверхности которой методом локального анодного окисления сформирована область шириной 1 мкм, глубиной 200 нм, с помощью центрифуги и последующим отжигом, золь приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан (ТЭОС) и этиловый спирт (95%) в соотношении 1:1,046 при комнатной температуре и смесь выдерживают до 30 минут, затем на втором этапе в полученный раствор вводят дистиллированную воду в соотношении 1:0,323, соляную кислоту (HCl) в соотношении 1:0,05, двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:0,399, где за единицу принят объем ТЭОС, и перемешивают не менее 60 минут, причем золь ортокремниевой кислоты наносят на подложку из кремния (Si) с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут, а отжиг осуществляют при температуре 600°C в течение 30 минут в воздушной среде.

При этом в газовом сенсоре с наноструктурой, изготовленной по предлагаемому способу, содержащем корпус, установленную в нем гетерогенную структуру из тонких пленок материалов, образованную на подложке из полупроводника, газочувствительный слой и контактные площадки к нему, сформированные в гетерогенной структуре, выводы корпуса и контактные проводники, соединяющие контактные площадки с выводами корпуса, в соответствии с предлагаемым изобретением газочувствительный слой изготовлен в виде тонкой нитевидной наноструктуры на основе золя ортокремниевой кислоты, содержащего гидроксид олова, на подложке из кремния, на поверхности которой методом локального анодного окисления сформирована область шириной 1 мкм, глубиной 200 нм, с помощью центрифуги и последующим отжигом, золь приготовлен в два этапа, на первом этапе смешивался тетраэтоксисилан и этиловый спирт, а на втором этапе в полученный раствор вводились дистиллированная вода, соляная кислота (HCl) и двухводный хлорид олова (SnCl2·H2O), причем тетраэтоксисилан и этиловый спирт в соотношении 1:1,046, дистиллированная вода в соотношении 1:0,323, соляная кислота (HCl) в соотношении 1:0,05, двухводный хлорид олова (SnCl2·2H2O) в соотношении 1:1,597.

На фиг.1 показана конструкция газового сенсора, который изготавливается по предлагаемым способам. Газовый сенсор содержит корпус 1 (фиг.1), гетерогенную структуру 2 (из тонких пленок материалов), в которой сформирован газочувствительный слой 3 (тонкая нитевидная наноструктура), контактные площадки 4, контактные проводники 5, выводы корпуса 6, штуцер 7, изоляторы 8, подложку 9 (из кремния, на поверхности которой методом локального анодного окисления сформирована область шириной 1 мкм, глубиной 200 нм).

Согласно предлагаемому способу золь ортокремниевой кислоты, содержащий гидроксид олова, приготавливают в два этапа для нанесения на подложку 9 из кремния (фиг.1). На первом этапе смешивают тетраэтоксисилан и этиловый спирт, смесь выдерживают до 30 минут перед переходом ко второму этапу. Время выдержки установлено, исходя из времени протекания реакции обменного взаимодействия между тетраэтоксисиланом и этиловым спиртом, в результате которой образуется этиловый эфир ортокремневой кислоты. На втором этапе после введения дистиллированной воды, соляной кислоты (HCl) и двухводного хлорида олова (SnCl2·2H2O) смесь перемешивают не менее 60 минут. Время процесса установлено, исходя из времени протекания реакции гидролиза эфира, в результате которой образуется ортокремневая кислота. А также исходя из того, что за это же время на этом этапе происходит образование гидроксида олова (Sn(OH)2) и протекает реакция поликонденсации ортокремневой кислоты.

Золь ортокремневой кислоты, содержащий гидрооксид олова, наносят на подложку 9 (фиг.1) из кремния (Si), на поверхности которой методом локального анодного окисления сформирована область шириной 1 мкм, глубиной 200 нм с помощью центрифуги с использованием дозатора при скорости вращения центрифуги 3000 об/мин в течение 2 минут. Использование таких режимов центрифуги позволяет достичь равномерного распределения золя, а также частично удалить растворитель из этой пленки.

В качестве подложки из кремния (Si) могут быть использованы пластины кремния КЭФ (111) толщиной 200-300 мкм, окисленные промышленным способом в кислороде, имеющие окисный слой SiO2, толщина которого около 800 нм. На поверхности подложки методом локального анодного окисления сформирована область шириной 1 мкм, глубиной 200 нм, в котором происходит образование газочувствительного слоя в виде тонкой нитевидной наноструктуры (SiO2)20%(SnO2)80%, где 20% - массовая доля SiO2, а 80% - массовая доля компонента SnO2. На фиг.2 представлена морфология поверхности газочувствительного слоя 3, полученная с помощью растровой электронной микроскопии (РЭМ), при массовой доле диоксида олова (SnO2) - 80% (фиг.2а - увеличение в 5000 раз, фиг.2б - увеличение в 300000 раз).

Отжиг осуществляют при температуре 600°C в течение 30 минут в воздушной среде. Использование таких параметров процесса позволяет окончательно удалить растворитель из пор на поверхности и в объеме пленки, а также осуществить реакции по разложению ортокремневой кислоты (Si(OH)4) до диоксида кремния (SiO2) и гидроксида олова (Sn(OH)4) до диоксида олова (SnO2). Контактных площадок 4 к газочувствительному слою из Ag сформированы путем вжигания при температуре 600°C.

Газовый сенсор работает следующим образом. Газочувствительный слой 3 при помощи выводов корпуса 6 включают в мостовую измерительную цепь (мост) в качестве одного из ее плеч, с помощью подстроечного резистора (не показан), мост балансируют (показания измерительного прибора устанавливают на нуль в условиях отсутствия газа). Взаимодействие газа с газочувствительным слоем приводит к изменению его электропроводности в ходе происходящих на поверхности химических превращений, например взаимодействия детектируемого газа с хемосорбированным кислородом. Так как газочувствительный слой 3 включают в мостовую измерительную цепь, то с изменением концентрации газа происходит ее разбаланс, который является функцией концентрации.

На фиг.3 представлены зависимости сигнала сенсора (5) газочувствительного слоя 3 от концентрации детектируемого газа - паров этанола (с): кривая 1 - газочувствительный слой в виде сплошной пленки SnO2, кривая 2 - газочувствительного слоя в виде тонкой нитевидной наноструктуры (SiO2)20%(SnO2)80%, где 20% - массовая доля SiO2, а 80% - массовая доля компонента SnO2. Видно, что при наличии тонкой нитевидной наноструктуры (SiO2)20%(SnO2)80% (кривая 2) сенсорный сигнал при той же концентрации газа значительно больше, чем при ее отсутствии (кривая 1). Тонкая нитевидная наноструктура (SiO2)20%(SnO2)80%, полученная в рамках золь-гель технологии, является перкаляционной структурой. Данная структура обладает максимальной чувствительностью ввиду следующего обстоятельства. При нахождении структуры на воздухе хемосорбированный кислород создает обедненный слой около перемычек зерен, следовательно, такая структура имеет высокое сопротивление (R). При воздействии газов восстановителей (паров этанола) на тонкую нитевидную наноструктуру (SiO2)20%(SnO2)80% в течение определенного времени (t) происходят различные химические реакции, в том числе связывание хемосорбированного кислорода. При этом обеднение исчезает и сопротивление (R) значительно уменьшается (фиг.4). Газочувствительный слой в виде сплошной пленки SnO2, имеет структуру, соответствующую спинодальному распаду. Такая структура значительно менее чувствительна к газам, чем перколяционная структура.

Благодаря отличительным признакам изобретения повышается чувствительность газового сенсора.

В результате испытаний экспериментальных образцов газовых сенсоров, изготовленных в соответствии с формулой изобретения, установлено, что значительно повышается чувствительность газовых сенсоров.

Предлагаемый способ изготовления газового сенсора с наноструктурой и газовый сенсор на его основе выгодно отличаются от известных и могут найти широкое применение при изготовлении газовых сенсоров.

Источники информации

1. U.S. Pat. №4614669, 30.09.1986.

2. Патент США 4792433, МКИ G01N 20/16, 1988.

3. Патент Великобритании 2249179, МКИ G01N 27/12, 1992.

4. U.S. Pat. №4397888, 09.08.1983.

5. Анисимов О.В., Максимова Н.К., Филонов Н.Г. Особенности отклика тонких пленок Pt/SnO2:Sb на воздействие CO // Журнал физической химии, 2004 - Т.78. - №10. - С.1907-1912.


СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОВОГО СЕНСОРА С НАНОСТРУКТУРОЙ И ГАЗОВЫЙ СЕНСОР НА ЕГО ОСНОВЕ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОВОГО СЕНСОРА С НАНОСТРУКТУРОЙ И ГАЗОВЫЙ СЕНСОР НА ЕГО ОСНОВЕ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОВОГО СЕНСОРА С НАНОСТРУКТУРОЙ И ГАЗОВЫЙ СЕНСОР НА ЕГО ОСНОВЕ
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОВОГО СЕНСОРА С НАНОСТРУКТУРОЙ И ГАЗОВЫЙ СЕНСОР НА ЕГО ОСНОВЕ
Источник поступления информации: Роспатент

Showing 91-100 of 120 items.
25.08.2017
№217.015.963d

Устройство управления самочувствительным линейным пьезоэлектрическим актюатором

Изобретение относится к электротехнике и и может быть использовано для привода различных устройств в прецизионном приборостроении, в оптических системах, в системах нанотехнологий. Технический результат состоит в упрощении управления и повышении надежности и уменьшении габаритов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002608842
Дата охранного документа: 25.01.2017
25.08.2017
№217.015.99a1

Способ получения биопрепарата, обладающего ноотропным действием

Изобретение относится к области фармакологии, а именно к способу получения пептидного биопрепарата ноотропного действия. Способ получения пептидного биопрепарата ноотропного действия заключается в гомогенизации личинок трутневого расплода в охлажденном изотоническом растворе NaCl, кипячении...
Тип: Изобретение
Номер охранного документа: 0002609872
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.a1af

Способ реставрации анатомических препаратов

Изобретение относится к области медицины, преимущественно к нормальной и патологической анатомии, зоологии и эмбриологии. Для восстановления ранее фиксированных и бальзамированных анатомических препаратов используют 1-10%-ный раствор бензоата натрия. Способ позволяет улучшить качество,...
Тип: Изобретение
Номер охранного документа: 0002606749
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b075

Способ изготовления газового сенсора на основе термовольтаического эффекта в оксиде цинка

Изобретение относится к нанотехнологии и может быть использовано при изготовлении газовых сенсоров. Предложен способ изготовления газовых сенсоров, содержащих корпус, установленную в нем на основании двухслойную наноструктуру ZnO-ZnO:Cu, точечные контакты, соединенные с выводами корпуса,...
Тип: Изобретение
Номер охранного документа: 0002613488
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.bad6

Способ неинвазивной экспресс-диагностики диабета второго типа методом ик-спектроскопии

Изобретение относится к медицине, в частности эндокринологии, и может быть использовано для неинвазивной экспресс-диагностики диабета второго типа. Проводят забор слюны человека. С помощью метода ИК-Фурье спектроскопии записывают ИК-спектры полос поглощения подсушенного при 20°С материала. При...
Тип: Изобретение
Номер охранного документа: 0002615722
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.bce2

Способ нанесения гальванических покрытий сплавом олово-цинк

Изобретение относится к области гальваностегии, в частности к нанесению гальванических покрытий сплавом олово-цинк с содержанием цинка в сплаве 20-80%, и может быть использовано для нанесения защитных покрытий, в том числе в виде альтернативы кадмиевым покрытиям. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002616314
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bd37

Самочувствительный многослойный пьезоэлектрический актюатор

Изобретение относится к области метрологии. Пьезоэлектрический актюатор содержит пьезокерамические секции, каждая из которых состоит из пары соединенных механически друг с другом пьезоэлементов, имеющих на одной плоской поверхности грани по одному плоскому электроду, а на другой противоположной...
Тип: Изобретение
Номер охранного документа: 0002616225
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c95a

Датчик давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом

Изобретение относится к измерительной технике, в частности к микромеханическим датчикам, и может быть использовано для создания датчиков для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Датчик...
Тип: Изобретение
Номер охранного документа: 0002619447
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c969

Сборно-разборный коленчатый вал двс

Изобретения относятся к области машиностроения, а именно к механизмам машин, в составе которых используется кривошипный вал, например к механизмам преобразования поршневых машин. Сборно-разборный коленчатый вал содержит две расположенные соосно коренные шейки (3, 10) и одну коренную втулку (8),...
Тип: Изобретение
Номер охранного документа: 0002619413
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cdb1

Система анализа и обработки информации об инновационном потенциале для управления приборостроительным предприятием

Изобретение относится к системам анализа и обработки информации об инновационном потенциале предприятий. Техническим результатом является повышение эффективности обработки информации об инновационном потенциале для принятия решений по управлению предприятием. Система содержит: модуль приема...
Тип: Изобретение
Номер охранного документа: 0002619718
Дата охранного документа: 17.05.2017
Showing 91-100 of 140 items.
10.06.2016
№216.015.4681

Способ предоставления данных, относящихся к пациентам медицинского учреждения

Способ относится к медицине, а именно к медицинским информационным системам, и предназначен для предоставления данных, относящихся к пациентам медицинского учреждения. Для каждого из нескольких пациентов медицинского учреждения формируют совокупность данных. Каждой сформированной совокупности...
Тип: Изобретение
Номер охранного документа: 0002586854
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4bb1

Способ изготовления тензорезисторного датчика давления с высокой временной и температурной стабильностью на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002594677
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4bf6

Опорный элемент для нижнего концевого участка ножки табурета или стула

Изобретение относится к элементам мебели для сидения, в частности к опорным элементам для нижнего концевого участка ножки табурета или стула, и может быть использовано в мебельной промышленности при изготовлении элементов мебели для сидения - табурета или стула. Технический результат - снижение...
Тип: Изобретение
Номер охранного документа: 0002594459
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4cbc

Способ изготовления опорного элемента для нижнего концевого участка ножки табурета или стула

Изобретение относится к способам изготовления элементов мебели для сидения, в частности к способам изготовления опорных элементов для нижнего концевого участка ножки табурета или стула, и может быть использовано в мебельной промышленности при изготовлении элементов мебели для сидения - табурета...
Тип: Изобретение
Номер охранного документа: 0002594460
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.583b

Штамм бактерий lactococcus lactis - компонент молочнокислой закваски

Изобретение относится к микробиологии и может быть использовано при производстве кисломолочных продуктов. Штамм Lactococcus lactis №1б-МИ, обладающий способностью накапливать биомассу в условиях минимального состава питательной среды и высокой биохимической активностью в отношении углеводов и...
Тип: Изобретение
Номер охранного документа: 0002588386
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b03

Способ лечения гипотонической формы дискинезии жёлчевыводящих путей и вегетативных расстройств у больных хроническим бескаменным холециститом

Изобретение относится к медицине, а именно к гатроэнтерологии, и касается лечения гипотонической формы дискинезии желчных путей и вегетативных расстройств у больных хроническим бескаменным холециститом. Для этого в комплекс медикаментозной терапии включают гербастресс - по 1 таблетке в сутки во...
Тип: Изобретение
Номер охранного документа: 0002589900
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f95

Штамм бактерий streptococcus thermophilus, используемый для приготовления кисломолочного продукта

Изобретение относится к микробиологической и пищевой промышленности и касается молочнокислых бактерий Streptococcus thermophilus. Они используются в качестве закваски при получении кисломолочных продуктов обычно в сочетании с культурами болгарской палочки. Штамм Streptococcus thermophilus...
Тип: Изобретение
Номер охранного документа: 0002590716
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6794

Фильтр тонкой очистки топлива многократного использования

Изобретение относится к области двигателестроения, в частности к фильтрам для очистки топлива в двигателях внутреннего сгорания (ДВС). Предложен фильтр тонкой очистки топлива, включающий крышку (4) с входным штуцером (5), корпус (1) с фильтрующим элементом (12) и выходным штуцером (7). Крышка...
Тип: Изобретение
Номер охранного документа: 0002591370
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.67c0

Консервант для анатомических препаратов

Изобретение относится к медицине и может быть использовано при изготовлении макроскопических препаратов и бальзамировании трупов. Консервант анатомических препаратов для фиксации биологических тканей представляет собой 1-10%-ный водный раствора бензоата натрия. Изобретение позволяет...
Тип: Изобретение
Номер охранного документа: 0002591982
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6843

Устройство для получения дозированных смесей с регулировкой подачи

Изобретение относится к смесительным устройствам и может быть использовано в нефтехимической, химической и других отраслях промышленности для получения смесей определенного соотношения. Устройство содержит центральную камеру, напорную и смесительную камеры, соединенные конфузором, установленные...
Тип: Изобретение
Номер охранного документа: 0002591960
Дата охранного документа: 20.07.2016
+ добавить свой РИД