×
10.11.2014
216.013.03f0

Результат интеллектуальной деятельности: СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения антиоксидантной/оксидантной активности природных, синтетических и биологических объектов для исследования антиоксидантных/оксидантных свойств веществ и продуктов, контроля состава пищевых продуктов, диагностики заболеваний. Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки раствора реагента или анализируемого вещества. Изобретение обеспечивает повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга анализируемых веществ, используемых реагентов и растворителей. 2 з.п. ф-лы, 6 ил., 6 пр.

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности.

Известен способ количественного определения оксидантов и/или антиоксидантов в коже [Международная публикация WO/1996/013193], заключающийся в определении потенциала тестового раствора, содержащего FeCl3 или комплекс ADP-Fe(III) для определения антиоксидантов и систему I2/Nal для определения оксидантов, введенного в контакт с кожей.

К недостаткам данного способа можно отнести то, что в тестовом растворе используются только водные среды, что не позволяет анализировать широкий круг важных органических антиоксидантов и оксидантов. Кроме того, используется кислый раствор (pH=2), что не моделирует реальные процессы, происходящие в организме в нейтральной среде. Измеряется только одно значение потенциала, которое зависит от множества факторов и не дает достоверной информации о количестве антиоксидантов/оксидантов, т.к. не учитывается исходное состояние системы. Также результат измерения выражают в виде потенциала. Не оценивается собственно величина оксидантной и/или антиоксидантной активности, что усложняет интерпретацию получаемых результатов. Также использование системы I2/Nal снижает достоверность получаемых результатов из-за повышенной летучести I2.

Известен способ определения антиоксидантов в растворе [Международная публикация US 6177260 B1], основанный на использовании в качестве окислителя комплекса Fe(III)-трипиридилтриазина, который при взаимодействии с антиоксидантами восстанавливается до Fe(II)-трипиридилтриазина, окрашенного в синий цвет (максимум поглощения при 593 нм).

Недостатком этого способа является то, что метод является не чувствительным к сульфгидрильным SH-содержащим антиоксидантам, таким как глутатион и цистеин, являющимся одним из основных звеньев антиоксидантной системы защиты организма, поэтому метод не позволяет оценить суммарное содержание антиоксидантов в исследуемом объекте. Кроме того, в способе используется также кислый раствор, что не моделирует реальные процессы, происходящие в организме в нейтральной среде.

Наиболее близким решением служит способ определения оксидантной/антиоксидантной активности растворов (RU 2235998), заключающийся в том, что предварительно готовят исходный раствор, в который вводят медиаторную систему, содержащую одновременно окисленную и восстановленную формы реагента, а оценку оксидантной/антиоксидантной активности проводят по изменению окислительно-восстановительного потенциала раствора, определенного до и после введения в исходный раствор анализируемого вещества.

К недостаткам данного способа можно отнести то, что в данном способе в качестве медиаторной системы могут быть Ox/Red пары химических элементов или соединений. Использование одновременно двух форм системы существенно усложняет выбор компонентов медиаторной системы, которые необходимо варьировать в зависимости от круга анализируемых соединений, особенно в апротонных средах для анализа органических соединений. Кроме того, при предложенном алгоритме не учитывается влияние матрицы изучаемого объекта на изменение потенциала системы. Также в данном способе в органических растворителях предлагается применять систему ферроцен/феррициний, использование которой несмотря на хорошую обратимость крайне затруднительно из-за неустойчивости ионов феррициния. И как было отмечено, использование системы I2/I- снижает точность получаемых результатов.

Задачей, решаемой данным изобретением, служит повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга используемых реагентов и растворителей, анализируемых веществ.

Задача решается тем, что в качестве реагента используют только одну окисленную или восстановленную форму металла в составе комплексного соединения. Таким образом, расширяется круг используемых реагентов и круг исследуемых объектов в различных растворителях. Благодаря тому, что концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла. За счет быстрого протекания реакции и быстрого установления равновесия в растворе увеличивается экспрессность анализа. Измерение потенциала проводится после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом и последующей добавки раствора реагента или анализируемого вещества, что также приводит к увеличению экспрессности анализа. Анализ проводится путем введения двух последовательных добавок сначала анализируемого вещества в раствор реагента, а затем добавки также раствора анализируемого вещества или реагента. Таким образом, это позволяет учесть влияние матрицы сложных объектов на изменение потенциала и повысить воспроизводимость, точность, достоверность. Также в случае второй добавки реагента, а не анализируемого вещества, значительно экономится объем исследуемого объекта в тех случаях, когда это необходимо.

Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки реагента или анализируемого вещества.

В качестве реагента может быть использована окисленная форма металла в составе комплексного соединения. В этом случае антиоксиданты в составе анализируемого вещества реагируют с окисленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αАОА=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где АОА - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,203

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C′ - концентрация окисленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагента может быть использована восстановленная форма металла в составе комплексного соединения. В этом случае оксиданты в составе анализируемого вещества реагируют с восстановленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Оксидантную активность рассчитывают по формуле:

,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, то определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Оксидантную активность в этом случае рассчитывают по формуле:

,

где OA -оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

Е1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора восстановленной формы реагента, B;

C′ - концентрация восстановленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

Таким образом, в обобщенном виде антиоксидантную/оксидантную активность рассчитывают по формулам:

1) по двукратной добавке анализируемого вещества:

,

где AOA - антиоксидантная активность, М-экв;

OA - оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора;

2) по однократной добавке анализируемого вещества и последующей добавке реагента

,

где AOA - антиоксидантная активность, М-экв;

OA- оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C - концентрация окисленной/восстановленной формы реагента во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагентов могут быть использованы комплексные соединения металлов переменной валентности с неорганическими лигандами, например K3[Fe(CN)6], K4[Fe(CN)6], K3[Mn(CN)6], K4[Mn(CN)6], K3[Mo(CN)8], K4[Mo(CN)8], [Fe(SCN)3], [Fe(SCN)2], также комплексные соли металлов переменной валентности с органическими лигандами, например тетраэтиламмония гексацианоферрат (III), тетраэтиламмония гексацианоферрат (II), тетрабутиламмония гексацианоманганат (III), тетраэтиламмония тетрахлороферрат (III), тетраэтиламмония тетрахлороферрат (II), Fe(II)-PDT, Fe(II)-TPTZ, Fe(III)-TPTZ, дикетонаты железа, никеля, кобальта. В качестве растворителей используются гидрофильные, гидрофобные и смешанные растворители.

В качестве протонных растворителей могут быть использованы вода, спирты и др., в качестве апротонных: хлороформ, ацетонитрил, гексан, ацетон и различные эфиры. Также может быть использована смесь растворителей.

Рабочий электрод может быть изготовлен из платины, золота стеклоуглерода.

Электродом сравнения в водных растворах может служить стандартный хлорсеребряный электрод, в органических растворителях - двуключевой хлоридсеребрянный электрод, первая емкость которого заполнена водой, содержащей хлорид-ионы, вторая емкость - органическим растворителем, например ацетонитрилом, содержащим, например, перхлорат лития или тетраэтиламмония тетрафторборат. В органических средах также может быть использован электрод первого рода Ag/AgNO3 в органическом растворителе.

Указанные отличия существенны. Использование в качестве реагента одной окисленной или восстановленной формы металла в составе комплексного соединения позволяет расширить круг используемых реагентов и круг исследуемых объектов в различных растворителях. Концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, поэтому химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла, что увеличивает экспрессность метода. Измерение потенциала проводится после прохождения химической реакции, что сокращает число измерительных стадий и также увеличивает экспрессность метода. Введение двух последовательных добавок раствора анализируемого вещества существенно повышает точность, достоверность и воспроизводимость результатов, что позволяет анализировать различные объекты со сложной матрицей.

В настоящее время из патентной и научно-технической литературы не известен способ определения антиоксидантной/оксидантной активности в заявляемой совокупности признаков.

На фиг.1 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] двух добавок аскорбиновой кислоты в водной среде.

На фиг.2 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)2] двух добавок пероксида водорода в водной среде.

На фиг.3 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] аскорбиновой кислоты и последующей добавки [Fe(SCN)3].

На фиг.4 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] зеленого чая и последующей добавки [Fe(SCN)3].

На фиг.5 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок раствора токоферола в хлороформе (электролит: 0,05М тетраэтиламмония тетрофторборат).

На фиг.6 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок нерафинированного подсолнечного масла (электролит: 0,05М тетраэтиламмония тетрофторборат).

Способ иллюстрируется следующими примерами.

Пример 1

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,075 мл 0,02М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 446 мВ. Далее вносят вторую добавку 0,019 мл того же раствора аскорбиновой кислоты. Установившееся значение потенциала (E2) составляет 412 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+AKOX,

где AK - аскорбиновая кислота, AKOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.1. Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения второй добавки раствора аскорбиновой кислоты, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,04 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 2

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)2], в фосфатном буферном растворе опускают рабочий электрод и электрод сравнения и вносят 0,060 мл 0,01М раствора Н2O2. Установившееся значение потенциала (E1) составляет 272 мВ. Далее вносят вторую добавку 0,060 мл того же раствора Н2O2. Установившееся значение потенциала (E2) составляет 298 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)2]+H202=n[Fe(SCN)3]+H2O2Red,

где H2O2Red - продукты восстановления пероксида водорода.

Результаты измерений приведены на фиг.2.

Оксидантную активность в этом случае рассчитывают по формуле:

,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента [Fe(SCN)2] в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора Н2O2, B;

E2 - потенциал, измеренный после введения второй добавки раствора Н2O2, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления OA равна 0,02 M-экв, что соответствует двухэлектронному восстановлению пероксида водорода.

Пример 3

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл 0,01375М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 442 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 464 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+АКOX,

где AK - аскорбиновая кислота, АКOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.3. Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C - концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что AOA равна 0,027 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 4

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл зеленого чая в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 431 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 455 мВ.

Результаты измерений приведены на фиг.4.

Антиоксидантную активность в этом случае рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M; α=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора зеленого чая, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C′- концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что АОА равна 0,036 М-экв.

Пример 5

В 5 мл раствора, содержащего 0,01М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 0,25 мл 0,060 М раствора токоферола в хлороформе. Установившееся значение потенциала (E1) составляет 469 мВ.

Далее вносят такое же количество токоферола. Установившееся значение потенциала (E2) составляет 438 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+токоферол=n[Fe(SCN)2]+токоферолOX,

где токоферолOX - продукт окисления токоферола.

Результаты измерений приведены на фиг.5.

Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора токоферола, B;

E2 - потенциал, измеренный после введения второй добавки раствора токоферола, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,058 M-экв, что соответствует наличию одной функциональной группы в молекуле токоферола, определяющей его антиоксидантные свойства, что соответствует действительности.

Пример 6

В 5 мл раствора, содержащего 0,001М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 1 мл подсолнечного нерафинированного масла в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 515 мВ. Далее вносят такое же количество нерафинированного масла. Установившееся значение потенциала (E2) составляет 469 мВ.

Результаты измерений приведены на фиг.6.

Антиоксидантную активность рассчитывают по формуле:

,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора нерафинированного масла, B;

E2 - потенциал, измеренный после введения второй добавки раствора нерафинированного масла, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления АОА равна 0,0022 М-экв.


СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ/ОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ
Источник поступления информации: Роспатент

Showing 21-30 of 115 items.
20.10.2014
№216.012.feb0

Способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля

Изобретение относится к измерительной технике, представляет собой способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля и может использоваться для анализа материалов, в частности металлов и сплавов в...
Тип: Изобретение
Номер охранного документа: 0002531056
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feba

Устройство для крепления электронагревателя в электропечи

Изобретение относится к технической физике, а именно к анализу материалов путем определения вязкости и электрического сопротивления и плотности высокотемпературных металлических расплавов. Предлагается устройство для крепления электронагревателя в электропечи, содержащее, по крайней мере, два...
Тип: Изобретение
Номер охранного документа: 0002531066
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.02fe

Способ синтеза 5,5'-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена) - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 5,5'-(2,3,7,8-бис-(9Н,10Н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена), который включает взаимодействие 1,6-дибромпирена с 2-додецил-5-трибутилстаннилтиофеном по методу Стилле с получением первого полупродукта...
Тип: Изобретение
Номер охранного документа: 0002532164
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0454

Способ термолучевой обработки вещества тл-осл твердотельного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к способу обработки рабочих веществ твердотельных детекторов ионизирующих излучений, основанных на явлениях термостимулированной люминесценции (ТЛ) и оптически стимулированной люминесценции (ОСЛ). Способ термолучевой обработки вещества твердотельного детектора ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002532506
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04d9

Минитеплоцентраль для выравнивания графика нагрузки в электрических сетях

Изобретение относится к электроэнергетике. Минитеплоцентраль содержит замкнутый контур низкокипящего рабочего тела, состоящий из теплообменника, турбины, конденсатора и циркуляционного насоса, причем к его теплообменнику подключен гидравлический теплоаккумулятор, оснащенный...
Тип: Изобретение
Номер охранного документа: 0002532639
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.05de

Способ синтеза 2-додецил-5-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1-ил)тиофена - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 2-додецил-5-(2,3,7,8-бис-(9H,10H-антрацен-9,10-диил)пирен-1-ил)тиофена, который заключается во взаимодействии 1-бромпирена с 2-додецил-5-трибутилстаннилтиофеном по реакции Стилле с получением первого полупродукта 5-(пирен-1-ил)-2-додецилтиофена, с...
Тип: Изобретение
Номер охранного документа: 0002532903
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.05f1

Способ определения меди в природных и питьевых водах

Изобретение относится к способу определения меди в природных и питьевых водах. Способ включает концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной...
Тип: Изобретение
Номер охранного документа: 0002532922
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0866

Резистивный материал

Изобретение относится к радио- и микроэлектронике, а именно к резистивному материалу, содержащему халькогениды серебра, мышьяка и германия. При этом материал дополнительно содержит селенид меди согласно эмпирической формуле: (AgSe)·(CuSe)·(AsSe)·(GeSe), где 0,6≤х≤0,95. Материал обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002533551
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08ac

Устройство для раскатки и раздачи труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Корпус устройства имеет присоединительную и рабочую части, центральный осевой канал, рабочие ролики, цилиндр и шток с возвратной пружиной. Цилиндр и шток имеют конические участки, являющиеся...
Тип: Изобретение
Номер охранного документа: 0002533621
Дата охранного документа: 20.11.2014
Showing 21-30 of 168 items.
27.06.2013
№216.012.4fcc

Способ производства труб

Изобретение предназначено для повышения точности и стабильности труб, получаемых волочением. Способ включает волочение трубы на длинной подвижной оправке через ряд роликовых волок. Повышение скорости волочения и величины деформации обеспечивается за счет того, что волочение проводят непрерывно...
Тип: Изобретение
Номер охранного документа: 0002486021
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.4fcf

Устройство для внутреннего профилирования труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочая часть корпуса выполнена в виде двух или более шпинделей, установленных один внутри другого с возможностью поворота относительно своей продольной оси, а ролики установлены на концевых...
Тип: Изобретение
Номер охранного документа: 0002486024
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50d1

Способ получения имплантированного ионами олова кварцевого стекла

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова. Упомянутый способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию...
Тип: Изобретение
Номер охранного документа: 0002486282
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51aa

Способ определения оксидантной/антиоксидантной активности веществ и устройство для его осуществления

Изобретение относится к способу определения оксидантной/антиоксидантной активности веществ. Способ включает приготовление исходного раствора с медиаторной системой, содержащей одновременно окисленную и восстановленную формы реагента и оценку оксидантной/антиоксидантной активности по...
Тип: Изобретение
Номер охранного документа: 0002486499
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5736

Метод определения неоплодотворенных яиц дрозофилы

Изобретение относится к области биохимии. Неразвившиеся яйца помещают на 45-50 минут в четырехпроцентный раствор гипохлорита натрия (NaOCl) и по количеству растворенных яиц определяют количество неоплодотворенных яиц. Предложенный метод позволяет осуществить массовые исследования достаточно...
Тип: Изобретение
Номер охранного документа: 0002487934
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59e9

Способ извлечения платины из шлама, получаемого при растворении платиносодержащего чугуна в серной кислоте

Изобретение относится к металлургии благородных металлов, в частности к переработке шламов и концентратов, содержащих элементные кремний, углерод и платину. Подобные шламы, в частности, образуются при растворении платиносодержащего чугуна в серной кислоте. Шламы смешивают с карбонатом натрия...
Тип: Изобретение
Номер охранного документа: 0002488638
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5cb5

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Выщелачивают глиноземсодержащее сырье с получением алюминатного раствора и красного шлама, отделяют красный шлам от алюминатного раствора и его подают на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид...
Тип: Изобретение
Номер охранного документа: 0002489354
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.6000

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Глиноземсодержащее сырье выщелачивают с получением алюминатного раствора, отделяют его от красного шлама и направляют алюминатный раствор на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия....
Тип: Изобретение
Номер охранного документа: 0002490208
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.727c

Способ переработки бокситов на глинозем

Изобретение относится к способу переработки бокситов на глинозем. Способ включает размол боксита в оборотном растворе, выщелачивание, сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроокиси алюминия и...
Тип: Изобретение
Номер охранного документа: 0002494965
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.746a

Оптический монокристалл

Монокристаллы предназначены для ИК-техники и для изготовления из них методом экструзии одно- и многомодовых ИК-световодов для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные...
Тип: Изобретение
Номер охранного документа: 0002495459
Дата охранного документа: 10.10.2013
+ добавить свой РИД