×
27.10.2014
216.013.0119

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ОРБИТ ОТ КОСМИЧЕСКОГО МУСОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит объектов космического мусора (ОКМ) на орбиты утилизации. Способ включает выведение космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных для очистки от ОКМ. Выбор последовательности увода ОКМ осуществляют путем сравнения критерия, например вероятности столкновения ОКМ с другими космическими объектами, для каждого ОКМ. Компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения. Техническим результатом изобретения является повышение эффективности проведения операций по удалению ОКМ с рабочих орбит.
Основные результаты: Способ очистки орбит от объектов космического мусора, основанный на выведении космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных для их очистки от объектов космического мусора, последовательных маневров дальнего и ближнего наведения для стыковки и захвата объектов и их спуск на орбиты утилизации, отличающийся тем, что выбор последовательности объектов из имеющихся на орбитах для их спуска на орбиты утилизации осуществляют путем последовательного сравнения значения критерия для каждого предполагаемого к спуску объекта, например вероятности столкновения объекта с другими космическими объектами, кроме того, компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения из условия обеспечения относительных параметров движения КАБ и объекта на начало этапа самонаведения АСМ, соответствующих вероятности стыковки и захвата объекта не ниже заданной.

Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит различного крупногабаритного космического мусора на основе многократной стыковки космических аппаратов (КА), например, при очистке рабочих орбит от отработавших отделяющихся частей (ОЧ) последних ступеней ракет космического назначения (РКН), ранее выведенных на рабочие орбиты, КА, завершивших выполнение своей миссии.

Известен способ увода космического мусора с орбит полезных нагрузок по заявке RU №2010119972/11 от 18.05.2010 г. Решение о выдаче патента от 20.04.2012 г., предусматривающее буксировку на тросе ОЧ и вход с ней вместе в атмосферу, т.е. одноразовая операция.

В качестве прототипа рассматривается способ очистки орбит, реализованный КА по патенту «Космический аппарат для очистки космоса от пассивных КА и их фрагментов» RU №2141436 B64G 1/00, B64G 1/22, B64G 9/00.

В соответствии с прототипом КА-буксир (КАБ) доставляется на начальную орбиту с помощью РКН. После этого происходит раздвижение фермы с ядерной энергетической установкой и развертывание штанг с электроракетными двигателями. Затем происходит включение ядерной энергоустановки и весь КАБ совершает перелет с помощью электроракетных двигателей на орбиту, близкую к орбите подлежащего удалению объекта, и совершает дальнее сближение с объектом до расстояния от нескольких километров до нескольких сотен метров. После чего происходит отстыковка активного автономного стыковочного модуля (ACM) от КАБ и его автономное сближение с удаляемой ОЧ с помощью двигательной установки АСМ. После сближения с удаляемой ОЧ автономный АСМ осуществляет захват ОЧ автоматическим манипулятором и осуществляет фиксацию его в устройстве фиксации.

Если относительные скорости удаляемой ОЧ и КАБ не превышают значений порядка 10…20 м/с, то АСМ осуществляет сближение и захват удаляемой ОЧ, будучи соединенным с КАБ тросом тросовой системы. В этом случае, после осуществления захвата и фиксации удаляемой ОЧ в устройстве фиксации АСМ происходит выравнивание скоростей основного КАБ и АСМ за счет регулирования скорости разматывания троса тросовой системы. Затем производится ориентация всей системы (КАБ+АСМ) вдоль местной вертикали и осуществляется либо перевод удаляемой ОЧ на орбиту, утилизации, гарантирующей ее торможение в атмосфере, если позволяет высота орбиты системы и длина троса, путем отсоединения ОЧ от АСМ, либо АСМ подтягивается к КАБ путем сматывания троса тросовой системой и стыкуется с ним с помощью стыковочных узлов.

Если подлежащая удалению ОЧ находится на орбите со значительным эксцентриситетом и КАБ не может сформировать такую орбиту за приемлемое время, то удаление ОЧ будет выглядеть следующим образом: КАБ формирует околокруговую орбиту высотой немного ниже (или выше) перицентра (апоцентра) орбиты удаляемой ОЧ, при этом разность высот выбирается из необходимой величины характеристической скорости для перехода АСМ эллиптическую орбиту удаляемой ОЧ. После этого КАБ ориентируется вдоль местной вертикали, происходит расстыковка АСМ с КАБ и их взаимное удаление вдоль местной вертикали за счет разматывания троса до тех пор, пока АСМ не окажется в перицентре (апоцентре) орбиты удаляемой ОЧ. В момент прохождения ОЧ через перицентр (апоцентр) происходит отцепление АСМ от троса, и он осуществляет сближение с ОЧ, захват и фиксацию с помощью устройства фиксации. Затем АСМ и основной КАБ осуществляют взаимное сближение и стыковку с помощью систем автоматической стыковки и стыковочных узлов. После этого с ОЧ производятся операции, аналогичные описанным выше.

Использование предлагаемого способа для очистки орбит затруднено по следующим причинам:

- высокая стоимость очистки орбиты из-за разработки ядерной двигательной установки;

- при выборе последовательности спуска ОЧ не учитывается опасность их столкновения с другими космическими объектами либо какие-то другие критерии, например масса, «переполненность» орбиты и т.д.;

- при реализации описанных маневров не учитываются ограничения, свойственные реальным системам, например двигательной установки (ДУ), в том числе время на запуск ДУ после отделения от РКН, интервалы между запусками ДУ, что приводит к изменению схемы дальнего наведения, выбору последовательности уводимых ОЧ, времени нахождения на орбите и, соответственно, дополнительным энергетическим затратам;

- не учитываются точностные характеристики системы управления (СУ) КАБ, точность отработки импульсов ДУ, ошибок системы целеуказаний по ОЧ, которые приводят к появлению больших начальных отклонений на начало этапа самонаведения, а затраты топлива для самонаведения АСМ напрямую связаны с точностью целеуказаний ОЧ;

- не рассматриваются действия по снижению энергетических затрат, вероятности успешной стыковки из-за случайного характера начальных параметров относительного движения на начало этапа самонаведения.

Техническим результатом предлагаемого решения является повышение эффективности проведения операций по удалению с орбит отработавших космических объектов за счет учета степени опасности объектов при выборе последовательности их спуска, с учетом ограничений, накладываемых характеристиками ДУ и СУ обслуживающих космических аппаратов, точностных характеристик наземной системы высокоточных целеуказаний.

Достижение указанных технических результатов при реализации предлагаемого способа обеспечивают за счет введения в известный способ, основанный на выведении КАБ и АСМ в области орбит, последовательные маневры дальнего и ближнего наведения для стыковки и захвата объектов и их спуск на орбиты утилизации, следующих действий:

- выбор последовательности объектов, из имеющихся на рабочей орбите для их спуска на орбиты утилизации, осуществляют путем последовательного сравнения критериев для каждого предполагаемого к спуску объекта, например вероятности столкновения объектов с другими космическими объектами;

- компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения из условия обеспечения относительных параметров движения КАБ и ОЧ на начало этапа самонаведения АСМ, соответствующих вероятности стыковки и захвата ОЧ не ниже заданной.

Реализация предлагаемого технического решения.

Реализация способа иллюстрируется на примере спуска ОЧ вторых ступеней РКН «Космос-3М» с использованием РКН «Союз-2» с космодрома Плесецк.

Учитывая тот факт, что все РКН «Космос-3М» запускались с космодрома Плесецк, существует возможность выбором азимута пуска, временем старта вывести РКН «Союз-2» с РБ «Фрегат» (или блоком выведения «Волга») и АСМ в плоскость орбиты выбранной ОЧ с учетом углов i наклонения орбиты и долготы ее восходящего узла Ω.

На 06.06.2012 года в околоземном космическом пространстве на высотах 1000 км находилось 298 орбитальных ОЧ вторых ступеней РКН «Космос-3М». Среди них 120 объектов имеют орбиты с наклонением 74° (73-75°), 157 объектов имеют орбиты с наклонением 82°(81-83°).

Предположим, что максимальной вероятностью столкновения обладает, например, ОЧ1 и запуск РКН в составе КАБ, АСМ осуществляется в плоскость орбиты этой ОЧ1.

1). Выбор последовательности объектов из имеющихся на рабочей орбите для их спуска на орбиты утилизации, осуществляют путем последовательного сравнения критерия для каждого предполагаемого к спуску объекта, например, вероятности столкновения объектов с другими космическими объектами, а также функциональных, энергетических, точностных возможностей бортовых систем КАБ и АСМ на этапах дальнего и ближнего наведения, при этом запуск РКН осуществляют в ближайшую плоскость орбиты первого уводимого объекта с минимальным временем дальнего наведения.

Выбор последовательности спускаемых космических объектов предлагается осуществлять из анализа критерия вероятности столкновения объектов с другими космическими объектами:

где

i - рассматриваемые космические объекты для их спуска с орбиты.

В общем случае эта задача - близкая к классической «задаче почтальона» по обходу заданного количества абонентов при минимальном значении какого-то критерия (вероятности нанесения ущерба от столкновения, опасное сближение и т.д.).

Функциональные, энергетические, точностные ограничения при решении баллистической задачи со стороны ДУ, СУ для АКБ (2):

- интервал времени Δtзап запуска ДУ после отделения РБ от РКН;

- минимальный интервал между запусками ДУ Δtк, к+1,

- допустимое количество KДУ включений ДУ,

которые оказывают влияние на схему выведения S(Hα, Hπ, Tфаз), например, на время этапа дальнего наведения TДНi, время увода TУВi, на заданную орбиту утилизации (в случаях когда эти интервалы должны быть практически нулевыми, эти ограничения приводят к необходимости ожидания следующего «временного» окна для старта с орбиты ожидания);

- допустимые угловые скорости программного разворота КАБ, реализуемые СУ ωпр;

- условия встречи АСМ и ОЧ (требования по освещенности ОЧ в случае использования оптической головки самонаведения, необходимости подсветки ОЧ и т.д.);

- запасы энергетики на борту КАБ ΔVΣКАБ, АСМΔVΣАСМ, в том числе запасы электрической энергии Iбат, в аккумуляторах, мощность солнечных панелей PСБ и т.д.;

- тяговооруженность АСМnАСМ.

Накопление ошибок в СУ приводит к необходимости корректировки навигационной системы, например, с помощью астрокоррекции, что требует специальных режимов, также накладывает ограничения на схему ДН.

Все приведенные выше ограничения удовлетворяются за счет увеличения времени нахождения КАБ на орбитах фазирования, промежуточных орбитах (на орбите после захвата объекта, на орбите после отделения объекта), что приводит к дополнительному расходу электрической энергии на работу бортовых систем, расхода рабочего топлива на ориентацию и стабилизацию АКБ на всех участках полета.

Этап ближнего наведения (самонаведения) предполагается одинаковым для всех ОЧ и его начальные условия обеспечиваются предыдущим этапом ДН, реализуемым КАБ.

Энергетические затраты ΔVСП для увода на орбиту утилизации, например, на орбиту с 25-летним сроком баллистического существования для ОЧ второй ступени «Космос-3М» с орбиты 1000 км составляет ~160 м/с. При маневре спуска общая масса системы равна массе КАБ+АСМ+ОЧ1.

Выбор ОЧ1

А. Осуществляется на основе анализа критериев (1), например из критерия вероятности столкновения ОЧ с другими космическими объектами.

Б. Оценка энергетических затрат.

Затраты характеристической скорости на этап дальнего наведения ΔVДН1 на ОЧ1 самые большие, т.к. определяются переходом с круговой орбиты 200-400 км (схема выведения РКН «Союз-2») на орбиту ОЧ1 (Н=1000 км) и не зависят от параметров орбиты фазирования.

В. Запуск РКН осуществляют в ближайшую плоскость орбиты ОЧ1 с минимальным TДН1.

Выбор ОЧ2 начинается с момента отделения ОЧ1 от связки КАБ+АСМ и, в соответствии с (1) оценивают энергетические затраты, функциональные возможности (2).

Величина ΔVДН2 для прихода в область ОЧ2 будет отличаться от ΔVСП добавку, обусловленную некомпланарностью орбит КАБ и ОЧ2: т.к. проводится очистка той же орбиты, т.е. имеет место возврат практически на ту же орбиту или близкую, учитывая дрейф по углу долготы восходящего узла Ω.

Наличие угла некомпланарности χ между орбитами КАБ и ОЧ приводит к соответствующей относительной скорости в точке встречи, определяемой по теореме косинусов:

Например, при выровненных орбитальных скоростях КАБ и ОЧ на круговой орбите высотой Н=1000 км величина круговой скорости Vкр=5,2 км/с в точке встречи относительная скорость будет определяться по формуле:

Для значения угла некомпланарности, равного χ=1 градусу, относительная скорость ΔV составит около 100 м/с, что приводит к невозможности проведения операции стыковки и захвата ОЧ с заданной степенью вероятности из-за наличия разбросов проектно-конструктивных параметров АСМ, разброса начальных отклонений на этапе самонаведения и т.д.

Величины ошибок по координатам и скоростям ОЧ определяются алгоритмами и аппаратурными возможностями наземной системы высокоточных указаний системы контроля космического пространства. Точности выведения КАБ, закладываемые на этапе выбора проектных параметров АСМ, приводят к значительным запасам топлива на этап самонаведения, большой тяговооруженности двигательной установки, большой длине троса, ограничениям по возможности проведения стыковки из-за значительных угловых скоростей линии визирования АСМ - ОЧ.

Предлагается компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах и ошибки определения координат и скоростей ОЧ системой высокоточных указаний распределить между КАБ и АСМ.

Критерий распределения: минимальные затраты топлива на реализацию операции.

Ограничения: условие обеспечения относительных параметров движения КАБ и ОЧ на начало этапа самонаведения АСМ, соответствующих вероятности стыковки и захвата ОЧ не ниже заданной.

Например, для отработки корректирующего импульса величиной ΔVкорs=10 м/с с помощью КАБ и АСМ требуются существенно разные массы топлива, например,

- для КАБ:

- для АСМ:

Из приведенного примера следует, что затраты на коррекцию одной и той же величины скорости ΔVкорs массовые затраты топлива существенно различны, определяются массой, удельным весом, импульсом.

Наличие ошибок целеуказания ОЧ приводит как к дополнительной некомпланарности, так и ошибкам по относительным скоростям и координатам в плоскости.

Например, суммарный начальный промах по дальности определяется как среднее геометрическое ошибок выведения КАБ в плоскости и ошибки прогноза положения ОЧ , выдаваемых наземной системой высокоточных целеуказаний, т.е.

аналогичные промахи по скорости , , соответственно, возникает максимальная дополнительная ошибка по скорости:

Рассматриваемый участок относительного движения КАБ и ОЧ для случая плоского движения (учет некомпланарности приведен выше) на этапе ближнего наведения за счет энергетики АСМ для проведения предварительных энергетических оценок можно рассматривать как прямолинейный, тогда относительное движение ОЧ и АСМ можно записать в виде равноускоренного движения, пренебрегая изменением силы тяготения, изменением ускорения АСМ за счет изменения его массы при работе его двигателей:

где a - ускорение, развиваемое двигательной установкой АСМ на этапе самонаведения,

t - время работы двигательной установки АСМ.

Для предварительных оценочных расчетов можно принять работу двигательной установки АСМ непрерывной на всем этапе самонаведения, в дальнейшем режим работы предполагается дискретным.

К концу этапа самонаведения должны быть обеспечены условия:

Из приведенных оценок (3)-(10) показана взаимосвязь между точностными характеристиками выведения РКН, КАБ, точности целеуказаний и затратами на этапы дальнего и ближнего наведения КАБ, АСМ.

Существенными факторами являются параметры углового движения ОЧ, в частности угловые скорости, ориентация ОЧ на момент стыковки.

Наличие угловой скорости ОЧ, дополнительные ошибки системы целеуказания приводят к появлению таких начальных условий относительного движения на начальном этапе стыковки КАБ и ОЧ, при которых вероятность успешной стыковки снижается.

Эта вероятность рассчитывается на основе проведения статистического эксперимента при моделировании процесса стыковки, где варьируемыми параметрами являются параметры относительного движения АСМ и ОЧ из области допустимых значений, в том числе и (7), (8).

Условия успешной стыковки определяются как относительными параметрами движения, так и характеристиками системы стыковки. Например, использование в качестве ответного стыковочного узла сопла камеры маршевого двигателя ОЧ, а на АСМ - выдвигаемый штырь с устройством фиксации и захвата. В этом случае возможна область относительных параметров движения, когда штырь не попадает в сопло, или из-за относительных угловых скоростей штырь, двигаясь по внутренней стенке сопла, не попадает в камеру и т.д. (патент РФ №2490183 B64G 1/64, F42B 15/36 от 07.03.2012).

Положительным свойством от применения предлагаемого способа является получение социального эффекта, который заключается в повышении безопасности космической деятельности.

Способ очистки орбит от объектов космического мусора, основанный на выведении космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных для их очистки от объектов космического мусора, последовательных маневров дальнего и ближнего наведения для стыковки и захвата объектов и их спуск на орбиты утилизации, отличающийся тем, что выбор последовательности объектов из имеющихся на орбитах для их спуска на орбиты утилизации осуществляют путем последовательного сравнения значения критерия для каждого предполагаемого к спуску объекта, например вероятности столкновения объекта с другими космическими объектами, кроме того, компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения из условия обеспечения относительных параметров движения КАБ и объекта на начало этапа самонаведения АСМ, соответствующих вероятности стыковки и захвата объекта не ниже заданной.
Источник поступления информации: Роспатент

Showing 161-169 of 169 items.
26.08.2017
№217.015.d8c5

Способ защиты земли от потенциально опасного космического объекта и система для его осуществления

Изобретение относится к области космонавтики и касается защиты Земли от потенциально опасных космических объектов (ПОКО) естественного происхождения (астероидов, комет и болидов) путем изменения их орбит за счет внешнего на них воздействия. Для защиты Земли от ПОКО в качестве меры воздействия...
Тип: Изобретение
Номер охранного документа: 0002623415
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e604

Способ минимизации зон отчуждения отделяемых частей ракет-носителей

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю. По результатам расчетов определяют участки на...
Тип: Изобретение
Номер охранного документа: 0002626797
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.f570

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива и устройство для его реализации

Группа изобретений относится к методам и средствам исследования процесса газификации ракетного топлива в баках изделия. Способ включает введение в экспериментальную установку (ЭУ) теплоносителя в диапазоне углов ввода, обеспечивающих заданные углы натекания теплоносителя на стенки ЭУ и...
Тип: Изобретение
Номер охранного документа: 0002637140
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.fc2e

Способ моделирования процессов тепло- и массообмена с окружающей средой элемента конструкции летательного аппарата и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса тепло- и массообмена элемента конструкции летательного аппарата (ЭКЛА) с окружающей средой в условиях снижения абсолютного давления основан на введении в экспериментальную модельную установку (ЭМУ) потока газа,...
Тип: Изобретение
Номер охранного документа: 0002638141
Дата охранного документа: 11.12.2017
13.02.2018
№218.016.1fec

Способ моделирования процесса газификации жидкого ракетного топлива в баке ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации жидкого компонента ракетного топлива в баке ступени ракеты-носителя, основанный на подводе в экспериментальную модельную установку (ЭМУ) теплоты, проведении измерений температуры, давления в различных...
Тип: Изобретение
Номер охранного документа: 0002641424
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2a00

Способ спуска отделяющейся части ракеты-носителя

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет...
Тип: Изобретение
Номер охранного документа: 0002643073
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2a78

Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике. Способ проведения летно-конструкторских испытаний (ЛКИ) автономного стыковочного модуля (АСМ) для очистки орбит от крупногабаритного космического мусора основан на выборе мишени из имеющихся на орбитах для их увода на орбиты утилизации,...
Тип: Изобретение
Номер охранного документа: 0002643020
Дата охранного документа: 29.01.2018
29.05.2018
№218.016.5565

Динамический гаситель колебаний

Изобретение относится к области машиностроения. Динамический гаситель колебаний содержит корпус. Инерционная масса расположена внутри корпуса в виде рабочей жидкости (6). Рабочая жидкость заключена в резинокордную оболочку (2) и сообщена с входными отверстиями инерционных трубок (3). Выходные...
Тип: Изобретение
Номер охранного документа: 0002654241
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c2d

Портативное устройство для экспресс-диагностики крови

Изобретение относится к анализу биологических материалов и измерению характеристик крови в живом организме, в частности к определению группы крови и резус-фактора. Портативное устройство для экспресс-диагностики группы крови и резус-фактора включает сменный картридж, снабженный измерительными...
Тип: Изобретение
Номер охранного документа: 0002655809
Дата охранного документа: 29.05.2018
Showing 171-180 of 194 items.
09.06.2018
№218.016.5c2d

Портативное устройство для экспресс-диагностики крови

Изобретение относится к анализу биологических материалов и измерению характеристик крови в живом организме, в частности к определению группы крови и резус-фактора. Портативное устройство для экспресс-диагностики группы крови и резус-фактора включает сменный картридж, снабженный измерительными...
Тип: Изобретение
Номер охранного документа: 0002655809
Дата охранного документа: 29.05.2018
05.07.2018
№218.016.6bb4

Способ формирования структуры сенсора газообразных токсичных веществ на основе пленок графена

Изобретение относится к полупроводниковой технике. Сущность изобретения заключается в формировании структуры сенсора газообразных токсичных веществ на основе пленок графена. Техническим результатом является достижение предела чувствительности графена к разнообразным токсичным газообразным...
Тип: Изобретение
Номер охранного документа: 0002659903
Дата охранного документа: 04.07.2018
12.07.2018
№218.016.6fbf

Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного...
Тип: Изобретение
Номер охранного документа: 0002661047
Дата охранного документа: 11.07.2018
21.11.2018
№218.016.9f18

Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат - снижение площадей зон отчуждения из-за отделяемых частей за счет обеспечения их полного сгорания на атмосферном...
Тип: Изобретение
Номер охранного документа: 0002672683
Дата охранного документа: 19.11.2018
13.12.2018
№218.016.a617

Графеновый сенсор для регистрации газообразных веществ

Использование: для контроля концентрации газовых составляющих в атмосфере при различных условиях. Сущность изобретения заключается в том, что графеновый сенсор включает диэлектрическую подложку, выполненную из карбида кремния, которая покрыта слоем графена, слой графена получен сублимацией...
Тип: Изобретение
Номер охранного документа: 0002674557
Дата охранного документа: 11.12.2018
29.12.2018
№218.016.ad23

Способ очистки орбит от объектов космического мусора

Изобретение относится к методам и средствам очистки орбит от космического мусора, главным образом отработанных ступеней (ОС) ракет-носителей. Способ включает выведение в область очистки космического аппарата-буксира (КАБ) (1) и автономного стыковочного модуля (АСМ) (2) на тросе (4). АСМ (2)...
Тип: Изобретение
Номер охранного документа: 0002676368
Дата охранного документа: 28.12.2018
24.01.2019
№219.016.b338

Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования...
Тип: Изобретение
Номер охранного документа: 0002677868
Дата охранного документа: 22.01.2019
20.03.2019
№219.016.e8b8

Способ выращивания кристаллов нитридов металлов iii группы

Изобретение относится к изготовлению полупроводниковых приборов путем нанесения полупроводниковых материалов на подложку и может быть использовано в полупроводниковой промышленности. Способ выращивания кристаллов нитридов металлов III группы из газовой фазы включает размещение подложки 12 в...
Тип: Изобретение
Номер охранного документа: 0002405867
Дата охранного документа: 10.12.2010
10.04.2019
№219.017.0744

Способ управления ракетами космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано при расчете энергетически оптимальных программ управления выведением первых ступеней ракет космического назначения (РКН) исходя из снижения влияния ограничений, обусловленных обеспечением падения отделяющихся частей...
Тип: Изобретение
Номер охранного документа: 0002456217
Дата охранного документа: 20.07.2012
16.05.2019
№219.017.52a8

Способ выращивания монокристаллов карбида кремния

Изобретение относится к технологии выращивания монокристаллов конденсацией испаряемого или сублимируемого материала и может быть использовано в полупроводниковой промышленности. В ростовой камере, снабженной теплоизоляцией, размещают параллельно одна напротив другой испаряющуюся поверхность...
Тип: Изобретение
Номер охранного документа: 0002411195
Дата охранного документа: 10.02.2011
+ добавить свой РИД