×
10.10.2014
216.012.fb71

Результат интеллектуальной деятельности: ЭЛЕКТРОД ДЛЯ СВАРКИ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при ручной дуговой сварке конструкций химического машиностроения из сталей 2,25%Cr-1%Mo-0,25%V композиции. Электрод состоит из стержня из легированной стали 2,25%Cr-1%Mo-0,25%V и покрытия, содержащего следующие компоненты (в % по массе): мрамор 30,5-56,0, плавикошпатовый концентрат 20,0-33,0; двуокись титана 14,0-20,0; песок кварцевый 4,0-10,0; ферросилиций 1,0-3,0; марганец металлический 0,5-3,0; ферротитан 6,0-12,0; сода кальцинированная 0,5-2,5. При изготовлении электродов использовано натриево-калиевое жидкое стекло в количестве 23-32% к массе сухой смеси. Электроды обеспечивают высокий показатель ударной вязкости металла шва при температурах -30°C и выше, а также высокие прочностные и пластические свойства при температурах до 454°C. 1 з.п. ф-лы, 4 табл.

Изобретение относится к области производства сварочных материалов для сталей 2,25%Cr-l%Mo-0,25%V композиции и может применяться при изготовлении корпусов нефтехимических реакторов.

Известны электроды для сварки сталей 2,25%Cr-l%Mo-0,25%V композиции, марок CMA-106HD (KOBELKO «Welding Handbook», Япония), FOX P24 (Bohler «Сварочные материалы для химической и нефтехимической промышленности», Германия), ALCROMO E225 (OERLIKON «Handbook of Welding Consumables», Германия-Швейцария).

Их недостатком является недостаточная прочность при повышенных рабочих температурах (до 454°C). В качестве прототипа были взяты отечественные электроды марки Н-10АА (патент RU 2398666 C2, опубликованный 10.09.2010), на основе стержня из стали марки Св-04Х2МАА и покрытия, содержащего в % по массе:

Мрамор 25-40
Концентрат плавикошпатовый 20,0-33,0
Песок кварцевый 10,0-15,0
Ферросилиций 4,0-5,0
Ферромарганец 3,0-5,0
Ферротитан 5,0-10,0
Диоксид титана 5,0-20,0
Стекло натриево-калиевое жидкое 23-32 (свыше 100%)

Металл шва, выполненный этими электродами, имеет высокую стойкость к тепловому охрупчиванию и высокие показатели сварочно-технологических характеристик, однако имеет низкую ударную вязкость при отрицательных температурах и низкую горячую прочность.

Техническим результатом изобретения является значительное увеличение прочностных свойств при температурах до 454°C, а также обеспечение высоких значений ударной вязкости при температурах -30°C и выше.

Дополнительным техническим результатом является сохранение высоких сварочно-технологических свойств электрода.

Технический результат изобретения достигается за счет того, что покрытие электрода содержит мрамор, концентрат плавикошпатовый, диоксид титана, кварцевый песок, ферросилиций, ферротитан и марганец металлический при следующем соотношении компонентов, масс.%:

Мрамор 30,5-56,0
Концентрат плавикошпатовый 20,0-33,0
Диоксид титана 14,0-20,0
Песок кварцевый 4,0-10,0
Ферросилиций 1,0-3,0
Марганец металлический 0,5-3,0
Ферротитан 6,0-12,0
Стекло натриево-калиевое жидкое 23-32 (свыше 100%)

Дополнительный технический результат достигается за счет введения в электродное покрытие кальцинированной соды в количестве 0,5-2,5 масс.%.

Проволока стального стержня дополнительно содержит ванадий при следующем соотношении компонентов, масс.%:

Углерод 0,14-0,16
Кремний 0,15-0,22
Марганец 0,70-0,90
Хром 2,10-2,50
Молибден 0,90-1,20
Ванадий 0,15-0,40
Железо и примеси Остальное

а также удовлетворяет соотношению трещиностойкости (содержание всех элементов вводится в % по массе) (при невыполнении этого соотношения появляется опасность появления «холодных» трещин).

Увеличение в составе проволоки содержания углерода и молибдена повысило прокаливаемость металла шва, что позволило получить достаточно однородную структуру металла шва с минимальным количеством структурно свободного феррита, а также высокие показатели длительной прочности. Повышение углерода свыше 0,16% ведет к образованию трещин в металле шва, а понижение ниже 0,14% ведет к снижению прочности металла сварного шва.

Повышение молибдена выше 1,2% ведет к существенному тепловому охрупчиванию, а снижение ниже 0,9% снижает прочность при повышенных температурах (до 454°C) и сопротивляемость ползучести металла шва.

Введение в состав проволоки ванадия существенно улучшило прочность металла, однако его содержание свыше 0,4% ведет к существенному ухудшению ударной вязкости при отрицательных температурах, а снижение ниже 0,15% не обеспечивает нужной прочности металла при 454°C.

Снижение в составе покрытия ферросилиция (до 3% и менее) и кварцевого песка (до 10% и менее) направлено на обеспечение повышения ударной вязкости при отрицательных температурах, однако при содержании ферросилиция менее 1% и кварцевого песка менее 4% существенно ухудшается отделимость шлака.

Повышение в составе покрытия мрамора (до 30,5% и более) улучшает газовую защиту сварочной ванны за счет повышения объемов образования защитных газов (CO, CO2), что в свою очередь предотвращает насыщение поверхностного слоя металла азотом, что опасно упрочнением металла и падением значений ударной вязкости. Однако при увеличении содержания мрамора свыше 56,0% ухудшается шлаковая защита сварочной ванны, а также идет активное выгорание легирующих элементов в металле шва, что приводит к потере нужного уровня прочности металла.

Введение кальцинированной соды в небольших количествах стабилизирует горение дуги за счет того, что Na обладает низкой «работой выхода», а значит легче ионизируется.

Оптимальное содержание вредных примесей, масс.%:

Никель Не более 0,20
Медь Не более 0,20
Сера Не более 0,010
Фосфор Не более 0,015

Металл шва, выполненного предлагаемыми электродами должен удовлетворять требованиям X и K-факторов, задающих чистоту металла по вредным примесям (X=(10P+5Sb+4Sn+As)≤0,12 (содержание всех элементов вводится в % по массе); K=(Pb+Bi+0,03Sb)≤1,5 ppm (содержание всех элементов вводится в ppm).

В ООО «Ижорские сварочные материалы» и ОАО «Ижорские заводы» был проведен комплекс промышленных испытаний предлагаемых электродов.

С использованием предлагаемых электродов были изготовлены и испытаны сварные пробы.

Химический состав проволок, использованных для производства электродов приведен в таблице 1.

Таблица 1
Химический состав проволок разных составов (% по массе)
№ партии C Mn Si Cr Ni Mo V S P Cu ψ
1.1 0,18 0,85 0,28 2,37 0,14 1Д9 0,29 0,005 0,012 0,04 0,450
1.2 0,15 0,76 0,22 2,43 0,16 0,97 0,23 0,005 0,009 0,06 0,395
1.3 0,14 0,88 0,21 2,36 0,12 1,04 0,27 0,005 0,011 0,08 0,389
1.4 0,14 0,81 0,17 2,48 0,18 0,67 0,20 0,005 0,008 0,05 0,369
известные 0,07 0,74 0,29 2,04 0,17 0,61 - 0,008 0,009 0,07 0,259

Составы электродных покрытий приведены в таблице 2.

Таблица 2
Составы электродных покрытий
Компоненты Партия 1.1% Партия 1.2% Партия 1.3% Партия 1.4% Известные %
Мрамор 46,5 46,5 47,5 42,5 33,0
Концентрат плавикошпатовый 21,0 19,0 20,0 24,0 26,0
Диоксид титана 14,0 14,0 15,0 15,0 14,0
Песок кварцевый 6,0 5,0 5,0 5,0 12,5
Ферросилиций 2,0 3,0 2,0 2,0 4,5
Марганец металлический 1,5 1,5 2,5 2,5 -
Ферромарганец - - - - 4,0
Ферротитан 8,0 9,0 7,0 8,0 6,0
Сода кальцинированная 1,0 2,0 1,0 1,0 -
Стекло натриево-калиевое жидкое (сверх 100%) 24 26 25 28 30

Испытания на растяжение металла шва предлагаемых электродов проходили при температурах +20°C и +454°C. Испытания известных электродов проходили при +20°C и +450°C. Результаты испытаний приведены в таблице 3.

Таблица 3
Результаты испытаний на растяжение металла шва
№ партии Температура испытаний, °C Rm, H/мм2 RP0,2, H/мм2 A, % Z, %
1.1 Обнаружены небольшие трещинки перпендикулярно сварному шву
1.2 20 660 580 17 62,0
454 520 - - -
1.3 20 680 590 18 67,5
454 530 - - -
1.4 20 560 410 17 65,0
454 320 - - -
Известные 20 340 433 18 61,3
450 290 - - -

Испытания на ударный изгиб металла шва предлагаемых электродов проводились при температурах -30°C, -18°C. Известные электроды испытывались при +20°C. Результаты испытаний приведены в таблице 4.

Таблица 4
Показатели ударной вязкости металла шва
№ партии Температура испытаний, °C Значения показателя ударной вязкости, Дж/см2
1.1 Обнаружены небольшие трещинки перпендикулярно сварочному шву
1.2 -18 167,8 75,2 156,0
-30 99,7 124,8 84,4
1.3 -18 168,8 197,5 171,3
-30 95,5 112,2 110,6
1.4 -18 140,3 159,1 93,5
-30 85,2 100,3 78,3
Известные +20 75,3 80,1 84,5

Результаты испытаний показывают, что предлагаемые электроды имеют значительно лучшие механические свойства при удовлетворительных показателях сварочно-технологических свойств.

Источник поступления информации: Роспатент

Showing 61-61 of 61 items.
27.07.2019
№219.017.b9bd

Способ нанесения износостойкого покрытия на сталь

Изобретение относится к формированию функциональных покрытий на стальной поверхности, обладающих высокой стойкостью к коррозионному разрушению и износу. Способ включает последовательное сверхзвуковое холодное газодинамическое напыление композиционных частиц порошка сверхзвуковой газовой струей...
Тип: Изобретение
Номер охранного документа: 0002695718
Дата охранного документа: 25.07.2019
Showing 51-55 of 55 items.
24.05.2019
№219.017.6027

Сварочный материал

Изобретение относится к области производства сварочных материалов, используемых в атомной энергетике, в частности, для сварки корпусов парогенераторов. Материал содержит в мас.%: углерод 0,03-0,05, кремний 0,2-0,3, марганец 1,0-1,5, хром 11,0-14,0, никель 1,3-1,5, молибден 0,8-1,0, ванадий...
Тип: Изобретение
Номер охранного документа: 0002429307
Дата охранного документа: 20.09.2011
24.05.2019
№219.017.6076

Сварочный материал для сварки хладостойких низколегированных сталей

Изобретение относится к области металлургии, а именно к производству сварочных материалов, используемых в атомной энергетике для полуавтоматической сварки в смеси защитных газов металлоконструкций из хладостойкой низколегированной стали для транспортно-упаковочных комплектов металлобетонных...
Тип: Изобретение
Номер охранного документа: 0002436663
Дата охранного документа: 20.12.2011
29.05.2019
№219.017.684c

Фазовый пеленгатор

Изобретение может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Заявленный фазовый пеленгатор содержит три антенны, усилитель высокой частоты, перестраиваемый гетеродин, блок управления гетеродином, смесители,...
Тип: Изобретение
Номер охранного документа: 0002458355
Дата охранного документа: 10.08.2012
09.02.2020
№220.018.015a

Агломерированный флюс 48аф-71

Изобретение может быть использовано для автоматической сварки на переменном токе под флюсом теплоустойчивых сталей перлитного класса, применяемых в атомном энергетическом машиностроении. Агломерированный флюс содержит компоненты в следующем соотношении, мас.%: обожженный магнезит 24,4-27,6;...
Тип: Изобретение
Номер охранного документа: 0002713769
Дата охранного документа: 07.02.2020
23.07.2020
№220.018.358a

Агломерированный флюс 48аф-72

Изобретение относится к сварочным материалам и может быть использовано для электродуговой сварки под флюсом сталей аустенитного класса проволоками аустенитно-ферритного класса. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд 24,5-37, волластонит 27,5-35,0, плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002727137
Дата охранного документа: 20.07.2020
+ добавить свой РИД