×
10.10.2014
216.012.fb05

Результат интеллектуальной деятельности: СОСТАВ ФЛЮСА ДЛЯ СВАРКИ И НАПЛАВКИ ПРОВОЛОКОЙ И ЛЕНТОЙ ИЗ СТАЛИ АУСТЕНИТНОГО КЛАССА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для сварки нержавеющих сталей или наплавки антикоррозионного покрытия, например, оборудования атомных энергетических установок. Плавленый флюс содержит компоненты в следующем соотношении, мас.%:SiO9-15, CaO 19-31, AlO 28-34, CaF 29-33, FeO 0,005-1,000, MgO 0,005-2,000, MnO 0,01-1,000. При этом должны выполняться соотношения:(CaO/2+5MgO+30MnO+2,6FeO)/SiO≥1 и (SiO-8)/(31FO+10MnO)≤1000. Сварочный флюс может применяться с аустенитными сварочными и наплавочными материалами с пониженным содержанием углерода, при этом он обеспечивает повышенную стойкость наплавленного металла к тепловому охрупчиванию в результате термического старения, что позволяет увеличить срок службы оборудования реакторных установок. 1 табл.
Основные результаты: Флюс для сварки и наплавки проволокой или лентой из стали аустенитного класса, содержащий SiO, CaO, AlO, CaF, FeO, MgO, отличающийся тем, что он дополнительно содержит MnO при следующим соотношении компонентов, мас.%: при этом(CaO/2+5MgO+30MnO+2,6FeO)/SiO≥1;(SiO-8)/(31FO+10MnO)≤1000.

Изобретение относится к области производства сварочного флюса, используемого для сварки нержавеющих сталей и наплавки антикоррозионного покрытия оборудования атомных энергетических установок, а также других сосудов высокого давления в энергетическом машиностроении и нефтехимии.

В настоящее время наблюдается общемировая тенденция применения сварочных и наплавочных материалов с низким содержанием углерода для сварки сталей аустенитного класса и выполнения антикоррозионных наплавок. Пониженное содержание углерода в аустенитных сварочных материалах позволяет повысить стойкость металла швов и наплавок к межкристаллитной коррозии, а также значительно уменьшить эффект охрупчивания металла шва и наплавок в результате термического старения. Применение низкоуглеродистых проволок и флюсов из стали аустенитного класса обусловило необходимость создания высокотехнологичных сварочных флюсов, обеспечивающих получение высокого качества металла швов и наплавок.

В настоящее время для автоматической сварки нержавеющих сталей широко применяется флюс марки ОФ-6, который содержит в своем составе SiO2, CaO, Al2O3, CaF2 при следующем соотношении компонентов, масс.%:

SiO2 3,5-6,0
CaO 16,0-20,0
Al2O3 20,0-24,0
CaF2 50,0-60,0
MgO не более 2
MnO не более 0,3
Fe2O3 не более 1,0
S не более 0,025
Р не более 0,025

Флюс марки ОФ-6 обладает хорошими сварочно-технологическими свойствами при сварке проволокой, однако не подходит для наплавки лентой, так как не обеспечивает удовлетворительного формирования наплавленного валика. Для ленточной наплавки антикоррозионного покрытия автоматическим электродуговым способом применяется флюс марки ОФ-10, который содержит в своем составе SiO2, CaO, MgO, Al2O3, CaF2 при следующем соотношении компонентов, масс.%

SiO2 9,0-12,0
MgO 11,0-14,0
Al2O3 28,0-34,0
CaF2 35,0-46,0
CaO не более 8,0
MnO не более 0,3
Fe2O3 не более 1,0
S не более 0,025
Р не более 0,025

Оба эти флюса поставляются по ОСТ 5Р.9206-75 "Флюсы для сварки и наплавки сварочной проволокой и лентой".

Основным недостатком флюса ОФ-10 является плохое отделение шлаковой корки при наплавке ниобийсодержащими лентами, вследствие формирования прочных соединений типа шпинели на границе затвердевающих металла и шлака. Это приводит к образованию трудноудаляемых остатков шлака ("пригара") на поверхности валика, а также к повышенной загрязненности наплавленного металла шлаковыми включениями в виде силикатов различного состава, что оказывает негативное влияние на характеристики его пластичности и ударной вязкости.

Кроме того, с точки зрения унификации процессов сварки и наплавки оборудования, целесообразно применение флюса одной марки как для сварки проволокой, так и для наплавки лентой, обеспечивающего высокие сварочно-технологические свойства и требуемые показатели качества наплавленного металла (металла шва).

Известен состав универсального сварочного флюса, взятый в качестве прототипа, состав которого опубликован в заявке на изобретение RU 2009138174 А, опубликованной 20.04.2011 г., содержащий в своем составе SiO2, CaO, Al2O3, CaF2, Fe2O3, MgO при следующем соотношении компонентов, масс.%

SiO2 9-14
CaO 24-31
Al2O3 28-32
CaF2 29-33
Fe2O3 0,001-1,0
MgO 0,001-2,0

при этом должно выполняться соотношение:

(SiO2-8)4/Fe2O3≤3000

Флюс этого состава широко применяется при изготовлении оборудования атомных энергетических установок как для сварки нержавеющих сталей проволокой марок Св-04Х19Н11МЗ, Св-08Х19Н10Г2Б, так и для наплавки лентами Св-04Х20Н10Г2Б, Св-07Х25Н13, Св-10Х16Н25АМ6 и т.д. Флюс имеет хорошие сварочно-технологические свойства, в частности, наблюдается эффект самоотделения шлаковой корки и отсутствие пригара на поверхности валиков. Флюс так же обеспечивает получение металла швов и наплавок с показателями ударной вязкости KCU не ниже 30 Дж/см2 после технологических отпусков.

Недостатком указанных выше флюсов является непригодность их применения в сочетании с новыми аустенитными сварочными и наплавочными материалами, содержание углерода в которых составляет менее 0,03%. Низкое содержание углерода в составе сварочных материалов способствует интенсификации протекания окислительно-восстановительных процессов в сварочной ванне и более активному выгоранию марганца, что наряду с низким содержанием азота и неизменным содержанием никеля приводит к существенному увеличению содержания ферритной фазы в наплавленном металле, следствием чего является его повышенная склонность к охрупчиванию при последующих тепловых выдержках, в том числе после проведения технологических отпусков.

Техническим результатом изобретения является создание универсального плавленого сварочного флюса для автоматической сварки проволокой и наплавки лентой из стали аустенитного класса, приводящего к снижению склонности металла шва или наплавки к тепловому охрупчиванию и обеспечивающего показатель ударной вязкости не ниже 30 Дж/см2 после проведения технологических отпусков в сочетании как с обычными, так и с низкоуглеродистыми аустенитными сварочными материалами, содержание углерода в которых не превышает 0,03%.

Технический результат достигается тем, что плавленый флюс, содержащий SiO2, СаО, Al2O3, CaF2, Fe2O3, MgO, дополнительно содержит MnO при следующем соотношении компонентов, масс.%:

SiO2 9-15
СаО 19-31
Al2O3 28-34
CaF2 29-33
Fe2O3 0,005-1,000
MgO 0,005-2,000
MnO 0,01-1,000

при этом должны выполняться соотношения:

Достижение заявленного результата осуществляли за счет корректировки химического состава сварочного флюса с целью предотвращения выгорания марганца из наплавленного металла.

Известно, что степень окисления (выгорания) марганца обратно пропорциональна количеству оксида марганца во флюсе. Одним из способов предотвратить выгорание марганца из наплавленного металла является введение оксида марганца в состав сварочного флюса в количестве от 0,01 до 1,00%. При содержании оксида марганца менее 0,01% его влияние не проявляется. MnO в количестве более 1% приводит к интенсивному протеканию марганцевосстановительных процессов с образованием железомарганцевых силикатов сравнительно крупного размера (~0,02 мм), и как следствие, к снижению вязких характеристик наплавленного металла.

Ограничение верхнего предела содержания оксида марганца в составе флюса на столь низком уровне делает необходимым введение дополнительных условий, гарантирующих минимальный уровень выгорания марганца при выполнении наплавки. Многолетний опыт применения плавленых флюсов показал, что с повышением основности флюса интенсивность выгорания марганца снижается, а с уменьшением основности соответственно увеличивается. Увеличение содержания в составе флюса основных оксидов CaO, MgO и Fe2O3 и снижение содержания кислого оксида SiO2 приведет к снижению интенсивности выгорания марганца из наплавленного металла, при этом снижение содержания во флюсе SiO2 ниже установленных пределов недопустимо, так как это может вызвать появление пор в наплавленном металле. Из основных оксидов, кроме MnO, целесообразно увеличить нижний предел содержания Fe2O3 и MgO с 0,001 до 0,005%, а увеличение содержания CaO нецелесообразно, так как это приведет резкому повышению температуры кристаллизации флюса-шлака, и как следствие, к ухудшению сварочно-технологических свойств флюса. С учетом изложенного установлено соотношение (1) между суммарным содержанием основных оксидов с учетом степени их влияния и SiO2, обеспечивающее минимальную степень выгорания марганца из наплавленного металла. Следует отметить, что коэффициент, поставленный перед оксидом марганца, учитывает не только повышение основности флюса, но и снижение интенсивности окисления марганца в металле шва за счет наличия MnO в составе шлака. Невыполнение условий соотношения (1) приведет к выгоранию значительной доли марганца из наплавленного металла, и как следствие к увеличению содержания ферритной фазы в наплавке, что сделает ее более склонной к охрупчиванию в результате технологических отпусков.

Введение MnO в состав флюса привело к необходимости откорректировать соотношение, приведенное в прототипе. Соотношение (2) обеспечивает исключение образование силикатов в наплавленном металле при сохранении хороших сварочно-технологических свойств флюса: стабильности электродугового процесса, самопроизвольного полного отделения шлаковой корки, формирования валика равномерного сечения. При невыполнении этого соотношения количество F2O3 будет недостаточным для подавления кремневосстановительного процесса.

Проверку сварочно-технологических свойств флюса осуществляли при наплавке лентой марки Св-02Х18Н10Б сечением 0,7×50 мм на пластины из стали марки 15Х2МФА (ТУ 5.961-11060-2008) толщиной 60 мм на следующих режимах:

I=650-700А, Uд=32-36 В, Vсв=12 м/ч.

При испытаниях оценивали следующие параметры:

- стабильность электродугового процесса;

- формирование наплавленного валика;

- легкость и полноту отделения шлаковой корки;

- отсутствие пор и шлаковых включений в наплавленном металле.

- механические свойства металла наплавки после отпуска по режиму 670°С, 50 ч.

В таблице приведены результаты сравнительных испытаний опытных плавок флюса и прототипа при наплавке и механических испытаний наплавки.

Результаты испытаний подтверждают преимущество предлагаемого состава флюса по ударной вязкости наплавленного металла после отпусков при сохранении его прочности и пластичности, а также при обеспечении высоких сварочно-технологических свойств флюса.

Технико-экономический эффект при использовании предлагаемого флюса выразится в продлении срока службы реакторных установок за счет применения сварочных лент с пониженным содержанием углерода, позволяющим обеспечить получение наплавленного металла с более высоким комплексом служебных характеристик.

Флюс для сварки и наплавки проволокой или лентой из стали аустенитного класса, содержащий SiO, CaO, AlO, CaF, FeO, MgO, отличающийся тем, что он дополнительно содержит MnO при следующим соотношении компонентов, мас.%: при этом(CaO/2+5MgO+30MnO+2,6FeO)/SiO≥1;(SiO-8)/(31FO+10MnO)≤1000.
Источник поступления информации: Роспатент

Showing 11-14 of 14 items.
20.10.2015
№216.013.874e

Способ термической обработки сварных соединений из низкоуглеродистых феррито-перлитных сталей

Изобретение относится к области термической обработки и предназначено для термообработки сварных соединений контейнерного оборудования и узлов, работающих в условиях длительной эксплуатации под воздействием ударного нагружения и пониженных температур. Для получения необходимой структуры...
Тип: Изобретение
Номер охранного документа: 0002566241
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8750

Сварочная проволока для автоматической сварки реакторных сталей

Изобретение относится к сварочным материалам и может быть использовано для автоматической сварки реакторных сталей при изготовлении изделий в энергетическом машиностроении. Сварочная проволока для автоматической сварки реакторных сталей содержит, мас.%: углерод от более 0,1 до 0,14, кремний...
Тип: Изобретение
Номер охранного документа: 0002566243
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.91de

Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей...
Тип: Изобретение
Номер охранного документа: 0002568958
Дата охранного документа: 20.11.2015
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
Showing 11-20 of 27 items.
20.10.2015
№216.013.874e

Способ термической обработки сварных соединений из низкоуглеродистых феррито-перлитных сталей

Изобретение относится к области термической обработки и предназначено для термообработки сварных соединений контейнерного оборудования и узлов, работающих в условиях длительной эксплуатации под воздействием ударного нагружения и пониженных температур. Для получения необходимой структуры...
Тип: Изобретение
Номер охранного документа: 0002566241
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8750

Сварочная проволока для автоматической сварки реакторных сталей

Изобретение относится к сварочным материалам и может быть использовано для автоматической сварки реакторных сталей при изготовлении изделий в энергетическом машиностроении. Сварочная проволока для автоматической сварки реакторных сталей содержит, мас.%: углерод от более 0,1 до 0,14, кремний...
Тип: Изобретение
Номер охранного документа: 0002566243
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.91de

Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей...
Тип: Изобретение
Номер охранного документа: 0002568958
Дата охранного документа: 20.11.2015
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
28.07.2018
№218.016.7606

Аустенитная жаропрочная и коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002662512
Дата охранного документа: 26.07.2018
20.02.2019
№219.016.bce7

Аустенитная коррозионно-стойкая сталь

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных сталей, используемых в различных отраслях промышленности для деталей ответственного назначения. Аустенитная коррозионно-стойкая сталь, содержит компоненты в следующем соотношении, в мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002284366
Дата охранного документа: 27.09.2006
08.04.2019
№219.016.fed5

Сталь для корпусных конструкций атомных энергоустановок

Изобретение относится к области металлургии, а именно к конструкционным сталям, используемым для корпусных конструкций атомных энергоустановок. Сталь содержит, мас.%: углерод 0,13-0,18, кремний 0,05-0,10, марганец 0,30-0,60, хром 2,70-3,00, никель 0,60-0,80, молибден 0,60-0,80, ванадий...
Тип: Изобретение
Номер охранного документа: 0002448196
Дата охранного документа: 20.04.2012
29.04.2019
№219.017.4500

Жаропрочная сталь для энергетического оборудования

Изобретение относится к области металлургии, а именно к жаропрочной стали, используемой для изготовления рабочих лопаток, роторов и других деталей паровых турбин, работающих на суперсверхкритических параметрах пара. Сталь содержит компоненты при следующем соотношении, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002404281
Дата охранного документа: 20.11.2010
20.05.2019
№219.017.5d4c

Легированный электрод для сварки теплоустойчивых сталей

Изобретение может быть использовано для сварки конструкций из легированных теплоустойчивых хромомолибденовых сталей, работающих при температуре плюс 450°С. Стержень электрода выполнен из легированной стали с ограниченным содержанием цветных примесей, серы и фосфора. Нанесенное на стержень...
Тип: Изобретение
Номер охранного документа: 0002398666
Дата охранного документа: 10.09.2010
20.05.2019
№219.017.5d4e

Состав сварочной проволоки

Изобретение относится к металлургии сложнолегированных сварочных материалов и может быть использовано для сварки деталей из сталей перлитного класса между собой или для приварки к деталям из стали аустенитного класса. Предложен состав сварочной проволоки, масс.%: углерод 0,08-0,12, кремний...
Тип: Изобретение
Номер охранного документа: 0002393075
Дата охранного документа: 27.06.2010
+ добавить свой РИД