×
28.07.2018
218.016.7606

АУСТЕНИТНАЯ ЖАРОПРОЧНАЯ И КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С. Сталь содержит компоненты в следующем соотношении, мас.%: углерод (С) 0,01-0,06, кремний (Si) 0,3÷0,8, марганец (Мn) 1,0÷1,7, хром(Сr) 15,0÷17,0, никель (Ni) 10÷12, молибден (Мо) 2,0÷2,5, титан (Ti) 0,05÷0,10, ниобий (Nb) 0,03-0,2, азот (N) 0,03÷0,10, сера (S) 0,01 и менее, фосфор (Р) 0,015 и менее, медь (Сu) 0,2 и менее, кальций (Са) 0,004-0,015, олово (Sn) 0,005 и менее, сурьма (Sb) 0,005 и менее, мышьяк (As) 0,005 и менее, свинец (Рb) 0,005 и менее, висмут (Bi) 0,005 и менее, железо – остальное. Для компонентов стали выполняется следующее условие: (Nb+Ti)/C≥3. Повышаются кратковременные и длительные механические свойства при высоких температурах, а также стойкость против питтинговой и межкристаллитной коррозии. 4 табл.
Реферат Свернуть Развернуть

Изобретение относится к области металлургии и изысканию сталей, используемых в атомной энергетике, машиностроении, в установках, работающих длительное время при повышенных температурах и флюенсе.

Известны применяемые в настоящее время марки аустенитных сталей, эксплуатируемых при повышенных температурах (AISI 321, AISI 316, AISI 304, 03Х16Н15М3, 08Х16Н11М3, 08Х16Н13М2Б) [1-5]. Основными недостатками указанных сталей являются более низкие кратковременные и длительные механические свойства. Низкая стойкость против питтинговой коррозии и межкристаллитной коррозии (МКК) в воде, имеющей повышенную концентрацию хлоридов.

Наиболее близкой по составу ингредиентов и назначению к предлагаемой стали является сталь по WO 2011155296 А1, С22С 38\58, 15.12.2011, содержащая, масс. %:

углерод 0,2 или менее
кремний 2,0 или менее
марганец 0,1-3,0
хром 14÷28
никель 6,0÷30
молибден 5,0 или менее
титан 0,5 или менее
ванадий 1,0 или менее
азот 0,3 или менее
кальций 0,02 или менее
железо и примеси остальное

Известная сталь имеет недостаточно высокие кратковременные и длительные прочностные характеристики, как при комнатной, так и при повышенных температурах, а также низкую стойкость против МКК и питтинговой коррозии в контакте с водой, имеющей повышенную концентрацию хлоридов.

Техническим результатом изобретения является повышение кратковременных и длительных механических свойств, повышение стойкости против МКК и питтинговой коррозии.

Для выполнения поставленной задачи необходимо вводить такие элементы, которые способствуют появлению дисперсных частиц в структуре, как при изготовлении, так и при эксплуатации материала. Необходимо также очистить металл от легкоплавких соединений серы, фосфора свинца, сурьмы, мышьяка, олова, висмута и соединений, быстро коагулирующих (Cr23С6) в процессе эксплуатации в реакторах при температурах 500-650°С. С этой целью в сталь, содержащую углерод, кремний, марганец, хром, никель, молибден, титан, азот, кальций, железо, серу, и фосфор, дополнительно введены ниобий, мышьяк, сурьма, олово, свинец, медь и висмут при следующем соотношении компонентов, мас. %:

углерод (С) 0,01-0,06
кремний (Si) 0,3÷0,8
марганец (Мn) 1,0÷1,7
хром(Сr) 15,0÷17,0
никель (Ni) 10÷12
молибден (Мо) 2,0÷2,5
титан (Ti) 0,05÷0,10
ниобий (Nb) 0,03-0,2
азор(N) 0,03÷0,10
сера (S) 0,01 и менее
фосфор (Р) 0,015 и менее
медь (Сu) 0,2 и менее
кальций (Са) 0,004-0,015
олово (Sn) 0,005 и менее
сурьма (Sb) 0,005 и менее
мышьяк (As) 0,005 и менее
свинец (Рb) 0,005 и менее
висмут (Bi) 0,005 и менее

Основное отличие изобретения от аналога заключается во введении и контроле ниобия, меди, олова, сурьмы, мышьяка, свинца, висмута, серы и фосфора

При введении ниобия в слитки при остывании образуются мелкодисперсные карбонитриды, что способствует увеличению центров кристаллизации и получению более мелкого зерна.

Частичная замена углерода азотом и введение ниобия позволяет не допускать появления и роста карбидов Ме23С6 в процессе изготовления полуфабрикатов и эксплуатации.

Атомы меди олова, свинца, сурьмы, мышьяка и висмута находятся на границах зерен, они имеют низкую температуру плавления, к тому же создают легкоплавкие эвтектики. Границы зерен ослабляются, и по ним происходит разрушение при длительном высокотемпературном нагружении.

Ограничение содержания меди, олова, сурьмы, мышьяка, свинца, висмута, серы и фосфора позволяет получать более чистые границы зерен и более высокую высокотемпературную длительную пластичность и прочность.

Атомы углерода с атомами хрома образуют крупные карбиды, коагулирующие при высокотемпературной эксплуатации. После термической обработки (аустенизация) при отсутствии ниобия выделяются карбиды размером 0,03-0,3 мкм. Длительная высокотемпературная эксплуатация приводит к укрупнению карбидов и значительному выделению их по границам зерен. Размеры выделений карбидов подрастают до 0,3-0,5 мкм, а их количество снижается в несколько раз. Увеличение расстояния между карбидами за счет их укрупнения приводит к снижению прочностных характеристик (кратковременных и длительных) [1].

Атомы азота равномерно распределены в γ и α-твердых растворах и базируются на дислокациях. Атомы азота взаимодействуют с титаном, ниобием, имеющими большее сродство к азоту, чем к углероду. При этом образуются мелкие термостойкие нитриды и карбонитриды, равномерно распределенные в теле зерен.

При легировании азотом и ниобием дисперсность частиц (Nb, N) значительно меньше, чем карбида Ме23С6.

Максимальный размер нитридной фазы, распределенной преимущественно внутри зерен, составляет 0,01-0,05 мкм [5].

Таким образом, частичная замена углерода на азот и добавление ниобия и титана приводят к снижению дисперсности выделившихся частиц и повышению устойчивости к коагуляции упрочняющей фазы. Следствием этого является повышение высокотемпературной кратковременной и длительной прочности.

Для повышения технологической пластичности в аустенитной стали необходимо снижение содержания серы и фосфора. Они образуют легкоплавкие эвтектики и окислы, понижающие высокотемпературную пластичность. Поэтому в заявляемой стали необходимо ограничить содержание серы (до 0,010 мас. %).

Вредное влияние фосфора на горячую пластичность проявляется при содержании его больше 0,015 мас. %. Поэтому в заявляемой стали необходимо ограничить содержание фосфора до 0,015 мас. %.

Кальций имеет большое сродство с серой, образуя соединение CaS. Для очищения стали от серы и фосфора и связывания остатков этих элементов в высокотемпературные тугоплавкие соединения в заявляемую сталь необходимо вводить при выплавке кальций (0,004-0,015 мас. %). Очищение границ зерен от серы и фосфора с помощью кальция приводит к повышению высокотемпературной пластичности, длительной прочности.

Для изделий, применяемых в энергомашиностроении и атомной энергетике, необходимо также обеспечение стойкости против МКК и питтингообразования. Известно [6, 7], что введение азота в аустенитную сталь повышает температуру начала питтингообразования.

Аустенитная сталь марки 03Х16Н15М3 может быть не склонна к МКК после аустенизации и провоцирующего отпуска при 650°С в течение 2 часов. Однако при эксплуатации (после 1000 ч при температуре 500-600°С) склонность к МКК проявляется, так как образуются крупные карбиды хрома на границах зерен и наблюдается обеднение хромом приграничных зон. При введении ниобия происходит образование термодинамически устойчивых карбидов, при этом хром остается в твердом растворе и МКК отсутствует.

Для обеспечения получения мелкозернистой структуры и стойкости против МКК необходимо иметь определенное соотношение ниобия и титана к углероду (Nb+Ti)/C≥3 Это соотношение обеспечивает мелкозернистую структуру и стойкость против МКК.

В заявляемой стали изменено содержание молибдена с 2,5-3,0 мас. % до 2,0-2,5 мас. %. Это объясняется тем, что молибден при высокотемпературной эксплуатации образует интерметаллиды (Fe2Mo, Сr2Мо) и повышает содержание α-фазы, что приводит к снижению длительной прочности и пластичности. Тем не менее, содержание молибдена должно быть достаточным для обеспечения образования пассивной пленки, устойчивой к воздействию хлоридов. Качественным показателем стойкости стали к питтинговой коррозии является индекс PREN (pitting resistant equivalent number [8]), который для стали аустенитного класса определяется выражением: PREN=%Сr+3,3×%Mo+30×%N, где содержание химических элементов выражено в массовых процентах. Следовательно, стойкость к питтинговой коррозии стали (с учетом дополнительного легирования азотом) возможно обеспечить при содержании молибдена не менее 2,0-2,5 мас. %, при одновременном повышении содержания азота.

В промышленных условиях на ОАО «ЧМК» были выплавлены плавки в вакуумно-индукционной и основной дуговой печах. Масса слитков после вакуумно-индукционной выплавки не превышала 300 кг. Из слитков изготовлены листовые заготовки (сутунки) размером 50×190×1010 мм и термически обработаны (аустенизация при 1050°С), затем были изготовлены образцы для испытаний. Химический состав предлагаемых плавок приведен в таблице 1.

Испытания на растяжение проводились по ГОСТ 1497-84 и ГОСТ 9651-84 при температурах 20, 600 и 550°С. Определены кратковременные свойства заявляемой и известной стали при комнатной температуре на цилиндрических образцах по ГОСТ 1497-84 и при 600 и 650°С по ГОСТ 9651-84 (по три образца на каждую температуру каждой плавки). В таблице 2 представлены результаты испытаний, которые свидетельствуют о явном преимуществе заявляемой стали по временному сопротивлению, пределу текучести и относительному удлинению при 20,550 и 600°С.

Были проведены испытания на длительную прочность при температурах 550 и 600°С на 3 образцах заявляемых плавок и известной плавки. На базе этих испытаний определяли время до разрушения и длительную пластичность.

Результаты представлены в таблице 3, из которой следует, что все плавки заявляемой стали имеют более высокие пределы длительной прочности. Испытания при 550°С показали, что время до разрушения у плавок заявляемой стали на 25% выше чем у известной. Это свидетельствует о преимуществе заявляемой стали.

Для оценки коррозионной стойкости было проведено изучение стойкости против питтингообразования ускоренным методом по ГОСТ 9.912-89.

Метод заключается в выдерживании образцов в растворе 10% FeCl3⋅6H2O при (20±1)°С в течение 5 ч с последующим определением потери массы образцов (не менее 5 шт.). Чем больше потери массы, тем меньше стойкость против питтинговой коррозии.

Снижение содержания серы и фосфора и наличие азота при достаточном уровне содержания молибдена способствует снижению скорости питтинговой коррозии. В таблице 4 представлены результаты ускоренных испытаний на коррозионную стойкость стали с содержанием серы 0,003 мас. %, 0,006 мас. %, 0,010 мас. % и известной стали с 0,014 мас. % S. Сравнение коррозионной стойкости показывает, что заявляемая сталь (плавка 1-3) характеризуется более высокими результатами, чем известная (плавка 4), то есть, чем больше серы (сульфидов), тем меньше стойкость к питтингообразованию. Кальций, взаимодействуя с серой и создавая тугоплавкие соединения (CaS), позволяет увеличивать стойкость к питтингообразованию.

Были проведены испытания на стойкость против МКК. Испытания проводили по ГОСТ 6032-89 в исходном состоянии и после выдержки образцов при температуре 600°С в течение 500 ч.

Образцы выдерживали в кипящем водном растворе сернокислой меди, серной кислоты и металлической меди в течение 24 часов. После кипячения образцы загибали на (90±3)°С и проводили осмотр при увеличении 8-12 крат. Результаты испытаний, представленные в таблице 4, свидетельствуют, что заявляемая сталь не подвержена МКК, в то время как известная сталь склонна к МКК после выдержки при 600°С.

*- Образцы не разрушены, испытания продолжаются

Примечание. В таблице приведены потери массы и стойкости против МКК средние по 5 образцам на каждую плавку.

Таким образом, введение в сталь ниобия, меди, и ограничение содержания углерода, серы, фосфора, олова, сурьмы, свинца, висмута и мышьяка позволяет повысить прочностные и коррозионные свойства заявляемой стали.

Кроме того, замена углерода на азот и связывание азота ниобием позволит уменьшить старение (падение механических свойств в процессе эксплуатации при повышенных температурах).

Технико-экономическая эффективность предлагаемого изобретения по сравнению с прототипом выразится в повышении эксплуатационных характеристик за счет повышения кратковременной и длительной прочности и повышения стойкости против МКК и питтингообразования.

ЛИТЕРАТУРА

1. Марочник сталей и сплавов. Изд-во «Машиностроение», М., 2001, 230 стр.

2. ГОСТ 5632-75 «Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные», изд-во «Госстандарт», М., 1975.

3. Журавлев В.Н., Николаева О.И. «Машиностроительные стали. Справочник». Изд-во «Машиностроение», М., 1989.

4. Спецификация кода ASME, №SA-508/SA-508M/1995.

5. Ю.З. Колвер. «Сталь» №4, 2010 г., с. 85.

6. Dae Wham Kim. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel. J. of Nucl. Materials, 420 (2012), 473-478.

7. J.Ganesh Kumar and coauthors. High temperatures dasign curves for high nitrogen grades of 316LN stainless steel. Nucl. Eng. And Design 240 (2010), 1363-1370.

8. P.A. Schweitzer., Encyclopedia of corrosion technology., 2004, 671 P.

Источник поступления информации: Роспатент

Showing 1-10 of 25 items.
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e127

Способ микродугового оксидирования прутков из титановой проволоки для выполнения износостойких наплавок

Изобретение относится к области гальванотехники и может быть использовано для микродугового оксидирования (МДО) сварочной проволоки из титановых сплавов, применяемой при изготовлении изделий судовой арматуры и механизмов, изделий химического машиностроения и др. Способ МДО прутков из титановой...
Тип: Изобретение
Номер охранного документа: 0002625516
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.1345

Литейный сплав на основе титана

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С. Литейный свариваемый сплав...
Тип: Изобретение
Номер охранного документа: 0002634557
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1400

Износостойкий сплав для высоконагруженных узлов трения

Изобретение относится к износостойким сплавам для высоконагруженных узлов трения. Сплав включает связующую матрицу эвтектического состава в количестве от 24,8 до 26,8 мас.% от массы сплава и карбонитрид титана TiCN. Матрица эвтектического состава состоит из никеля, вольфрама, молибдена, хрома,...
Тип: Изобретение
Номер охранного документа: 0002634566
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
20.12.2018
№218.016.a96d

Способ производства листового проката с регулируемым пределом текучести из стали унифицированного химического состава

Изобретение относится к области производства высокопрочных сталей улучшенной свариваемости для применения в судостроении, строительстве морских сооружений, транспортном и тяжелом машиностроении и др. отраслях промышленности. Получение проката унифицированного химического состава в листах...
Тип: Изобретение
Номер охранного документа: 0002675441
Дата охранного документа: 19.12.2018
25.01.2019
№219.016.b41a

Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их...
Тип: Изобретение
Номер охранного документа: 0002678045
Дата охранного документа: 22.01.2019
20.02.2019
№219.016.bc14

Носитель катализатора на металлической основе

Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой...
Тип: Изобретение
Номер охранного документа: 0002680144
Дата охранного документа: 18.02.2019
01.06.2019
№219.017.7211

Способ производства поковок из штамповых сталей типа 5хнм

Изобретение относится к производству поковок из штамповой стали типа 5ХНМ, предназначенных для изготовления штампов для горячей штамповки. В процессе выплавки стали в нее вводят кальций в количестве от 0,0005 до 0,003%. Затем осуществляют ковку, при которой перед первым выносом слиток нагревают...
Тип: Изобретение
Номер охранного документа: 0002690084
Дата охранного документа: 30.05.2019
Showing 1-10 of 33 items.
20.09.2013
№216.012.6aab

Способ изготовления заготовки обечайки активной зоны корпуса реактора типа ввэр

Изобретение относится к металлургии и может быть использовано при изготовлении крупногабаритных обечаек корпусов реакторов типа ВВЭР-1000. Изготавливают цельнокованую заготовку длиной не менее длины обечайки с учетом технологических припусков. Толщина стенки заготовки превышает толщину стенки...
Тип: Изобретение
Номер охранного документа: 0002492958
Дата охранного документа: 20.09.2013
20.07.2014
№216.012.de50

Способ обеспечения электроэнергией потребителей в условиях замерзающих арктических морей и комплекс технических средств для осуществления способа

Изобретения относятся к области обеспечения электроэнергией стационарных подводных объектов в условиях замерзающих морей. Для обеспечения электроэнергией потребителей доставляют в район потребления электроэнергии плавучий энергоблок и приемно-распределительное устройство, соединяют его...
Тип: Изобретение
Номер охранного документа: 0002522698
Дата охранного документа: 20.07.2014
10.10.2014
№216.012.fb05

Состав флюса для сварки и наплавки проволокой и лентой из стали аустенитного класса

Изобретение может быть использовано для сварки нержавеющих сталей или наплавки антикоррозионного покрытия, например, оборудования атомных энергетических установок. Плавленый флюс содержит компоненты в следующем соотношении, мас.%:SiO9-15, CaO 19-31, AlO 28-34, CaF 29-33, FeO 0,005-1,000, MgO...
Тип: Изобретение
Номер охранного документа: 0002530107
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fb71

Электрод для сварки теплоустойчивых сталей

Изобретение может быть использовано при ручной дуговой сварке конструкций химического машиностроения из сталей 2,25%Cr-1%Mo-0,25%V композиции. Электрод состоит из стержня из легированной стали 2,25%Cr-1%Mo-0,25%V и покрытия, содержащего следующие компоненты (в % по массе): мрамор 30,5-56,0,...
Тип: Изобретение
Номер охранного документа: 0002530215
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcfd

Сварочная проволока для автоматической сварки теплоустойчивых сталей перлитного класса

Изобретение относится к области металлургии, в частности к производству сварочных материалов, и может быть использовано для автоматической сварки теплоустойчивых сталей 2,25Cr-1Mo-0,25V композиции при изготовлении изделий в нефтехимическом машиностроении. Сварочная проволока, содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002530611
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0e9f

Агломерированный флюс 48аф-70

Изобретение может быть использовано для сварки низколегированных теплоустойчивых сталей перлитного класса, применяемых в нефтехимической промышленности. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд (19,0-25,0), синтетический шлак (14,0-18,0), плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002535160
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1c8f

Система для транспортировки текучей среды к плавающему судну

Изобретение относится к морским техническим средствам для освоения арктического шельфа, а именно к системам для транспортировки углеводородов между подводным терминалом и судном. В системе для транспортировки текучей среды к судну расположенная в погруженной части судна открытая вниз приемная...
Тип: Изобретение
Номер охранного документа: 0002538739
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.2f53

Жаропрочная коррозионностойкая сталь

Изобретение относится к области металлургии, а именно к жаропрочным коррозионностойким сталям, используемым в атомной энергетике и машиностроении в установках, эксплуатирующихся длительное время при температурах 500-600°C. Сталь содержит компоненты в следующем соотношении, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002543583
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f55

Способ термической обработки полуфабрикатов из стали мартенситного класса

Изобретение относится к области черной металлургии, а именно к технологии термической обработки полуфабрикатов из стали мартенситного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например контейнеров для перевозки отработавшего...
Тип: Изобретение
Номер охранного документа: 0002543585
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f57

Жаропрочный сплав на никелевой основе

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для элементов, используемых в атомной энергетике, нефтехимической и нефтеперерабатывающей промышленности, работающих при высоких температурах. Жаропрочный сплав на никелевой основе содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002543587
Дата охранного документа: 10.03.2015
+ добавить свой РИД