×
27.09.2014
216.012.f8a9

Результат интеллектуальной деятельности: МНОГОСЛОЙНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер. Композиционный материал для защиты от электромагнитного излучения состоит из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, отличается тем, что он представляет собой многослойную конструкцию, каждый слой которой выполнен из указанного состава, а содержание частиц сплава в каждом слое составляет 70-90 мас.% и ограничено определенным диапазоном размеров частиц из непрерывного ряда 1-200 мкм с увеличением размерности частиц в каждом последующем слое. Техническим результатом изобретения является увеличение рабочего диапазона частот материала от 100 МГц до 10 ГГц с сохранением низких значений коэффициента отражения и высоких значений магнитной проницаемости. 2 з.п. ф-лы, 1 табл., 2 ил., 2 пр.

Композиционный материал относится к средствам защиты от переменных электромагнитных полей в СВЧ диапазоне и может использоваться для обеспечения электромагнитной совместимости электротехнических и электронных устройств, создания безэховых камер для высокоточных измерений, снижения заметности военных объектов, а также для защиты биологических объектов от негативного влияния повышенных электромагнитных полей.

Создание радиопоглощающих экранов является важным направлением развития современной техники, они находят применение в различных областях деятельности человека, в том числе в электронной, электротехнической и военной промышленностях. Диапазон частот приборов, которые требуют использования радипоглощающих материалов, постоянно увеличивается, и, соответственно, растут требования к таким материалам по диапазону рабочих частот при сохранении весовых и габаритных характеристик. Зачастую требуется также дополнительно уменьшать вес и толщину материала ввиду миниатюризации электронных устройств и усовершенствования военной техники.

Согласно источникам [1, 2] материал, обеспечивающий наименьший коэффициент отражения электромагнитной волны, должен обладать одновременно магнитными и диэлектрическими характеристиками. В идеальном случае, чтобы выполнялось равенство Котр=0, необходимым условием является равенство ε′=µ′, где ε′ и µ′ - это действительные части диэлектрической и магнитной проницаемостей материала соответственно. Данное условие следует из формул, приведенных в источниках [1, 2]:

где w - волновое сопротивление материала. Если материал обладает конечной толщиной, то волновое сопротивление вычисляется следующим образом:

где ε=ε′-iε″ - диэлектрическая проницаемость материала;

µ=µ′-iµ″ - магнитная проницаемость материала;

d - толщина материала;

λ - длина волны электромагнитного излучения.

Одним из способов решения задачи создания радиопоглощающего материала, обладающего одновременно магнитными и диэлектрическими свойствами, является получение композиционного материала, включающего в себя компоненты, каждый из которых обладает одним из указанных свойств. Согласно источнику [3] наиболее эффективными для работы при заданной частоте являются частицы наполнителя размером от λ/4 до λ/2.

При этом толщина материала также играет важное значение для обеспечения эффективного радиопоглощения. Согласно источнику [4] наиболее эффективными радиопоглощающими свойствами при прочих равных условиях будет обладать материал толщиной порядка λ/20, где λ - длина волны поглощаемого излучения.

На данный момент известны многослойные композиционные радиопоглощающие материалы на основе полимерной матрицы, обладающей высокой диэлектрической проницаемостью, и различных магнитных и электропроводящих наполнителей (5, 6, 7). Однако данные материалы обладают недостатком в виде узкого диапазона рабочих частот, обусловленного наличием у каждого компонента наполнителя своей определенной резонансной частоты, при которой радиопоглощение наиболее эффективно. И как следствие, недостатком в виде большого количества различных компонентов, добавляемых в материал, что затрудняет и удорожает получение композиционного материала. Помимо этого в патенте РФ №2453953 из-за предполагаемой металлической подложки, входящей в состав материала, резко увеличивается удельная масса композиционного материала.

В качестве прототипа выбран композиционный материал (8) на основе полимерной матрицы и распределенных в ней частиц нанокристаллического сплава Fe-Si-Nb-Cu-B либо сплава Co-Fe-Ni-Cu-Nb-Si-B размером от 1 до 100 мкм. В данном изобретении поглощение электромагнитного излучения в СВЧ-диапазоне осуществляется с применением одного наполнителя вместо нескольких. Эффект поглощения излучения в широком диапазоне частот осуществляется за счет различных по размеру частиц наполнителя.

Согласно источнику [9] магнитные характеристики порошков зависят в значительной степени от размера частиц. В конечном счете, каждый диапазон фракционного состава порошков в резонансном режиме определяет эффективность защиты в определенном частотном спектре.

Однако в патенте, принятом за прототип, речь может идти только об интегральном эффекте, определяемым широким фракционным составом частиц, который не позволяет создавать композиционные защитные материалы, работающие в заранее заданном диапазоне частот. Поэтому обязательным условием создания композиционного защитного материала является его работа в резонансных диапазонах частот.

Техническим результатом изобретения является увеличение диапазона рабочих частот композиционного материала от 100 МГц до 10 ГГц, при которых работает большинство современных электронных устройств, включая сотовые телефоны, микропроцессорные системы и радиолокационные станции, с сохранением коэффициента отражения не более - 10 дБ.

Технический результат достигается за счет того, что композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, в соответствии с изобретением представляет собой многослойную конструкцию, каждый слой которой выполнен из указанного состава, а содержание частиц сплава в каждом слое составляет 70-90 мас.% и ограничено определенным диапазоном размеров частиц из непрерывного ряда 1-200 мкм с увеличением размерности частиц в каждом последующем слое.

В частности, композиционный материал может состоять из слоев А-Е со следующими диапазонами размеров частиц сплава в каждом из слоев:

Слой А - 1-15 мкм;

Слой В - 15-35 мкм;

Слой С - 35-50 мкм;

Слой В - 50-100 мкм;

Слой Е - 100-200 мкм.

Кроме того, толщина каждого из слоев А-Е варьируется следующих пределах:

Слой А - 0,1-0,5 мм;

Слой В - 0,5-1,0 мм;

Слой С - 1,0-5,0 мм;

Слой D - 5,0-10,0 мм;

Слой Е - 10,0-30,0 мм.

Экспериментально установлено, что требуемый эффект достигается при содержании частиц в каждом слое, начиная с 70 мас.%. При содержании частиц более 90 мас.% наблюдается резкое снижение прочности материала, поэтому оптимальное содержание частиц в каждом слое составляет 70-90 мас.%.

Использование в композиционном материале частиц размерами 1-200 мкм позволяет достичь оптимального эффекта, так как обеспечивает коэффициент отражения не более - 10 дБ в диапазоне частот от 100 МГц до 10 ГГц. Дальнейшее увеличение размеров частиц приводит к увеличению общего коэффициента отражения материала в данном частотном диапазоне вследствие пластинчатой формы частиц.

Расчеты показывают, что для поглощения электромагнитного излучения определенной частоты необходимо использовать наполнитель определенного фракционного состава.

Благодаря пластинчатой форме частицы большего размера обладают большей отражательной способностью, увеличивающейся с повышением частоты, поэтому необходимо размещать слои в данном композиционном материале в порядке непрерывного увеличения размеров частиц с целью обеспечения максимального поглощения электромагнитного излучения в объеме материала.

Для достижения максимального эффекта поглощения электромагнитного излучения необходимо также подбирать толщину каждого слоя, исходя из значений частоты излучения, на которой планируется радиопоглощение в данном слое. Как уже было отмечено выше, наилучшими радиопоглощающими свойствами при прочих равных условиях будет обладать материал с толщиной порядка λ/20. Согласно этому для работы материала в заявленном диапазоне частот необходимо обеспечить следующие толщины слоев композиционного материала:

Слой А - 0,1-0,5 мм;

Слой В - 0,5-1,0 мм;

Слой С - 1,0-5,0 мм;

Слой D - 5,0-10,0 мм;

Слой Е - 10,0-30,0 мм.

Данная конструкция композиционного материала позволяет управлять диапазоном рабочих частот и эффективностью поглощения электромагнитных волн за счет создания многослойной композиции, каждый слой которой, имея определенную массовую долю ферромагнитного дисперсного материала определенной фракции в диэлектрической матрице, позволяет в резонансном режиме поглощать излучение в заранее заданном диапазоне частот.

Интегральный эффект при взаимодействии всех слоев композита с падающей электромагнитной волной, во-первых, повышает эффективность поглощения и, во вторых, расширяет диапазон рабочих частот.

Композиционный материал, обладающий такой структурой, обеспечивает удовлетворительное поглощение электромагнитных волн в диапазоне частот от 100 МГц до 10 ГГц.

На фиг.1 представлено сравнение интегрального эффекта от наполнителя фракционного состава от 1 до 200 мкм и эффектов от наполнителей, разделенных на фракции определенных диапазонов. Фракционный состав определяется экспериментальным путем для каждой частоты. При этом интегральный эффект всегда ниже резонансного.

На фиг.2 представлен многослойный композиционный материал, состоящий из слоев А-Е, где 1 - полимерная основа слоев, 2 - частицы сплава системы Fe-Cu-Nb-Si-B.

В качестве ферромагнитного дисперсного наполнителя используется сплав АМАГ-200.

Порошки заранее заданной фракции получают методом высокоскоростного размола аморфной или нанокристаллической ленты шириной 20 мм и толщиной 20-30 мкм на установке типа Дези-11. Рассев порошков проводится с помощью классификатора типа ИГ-6УН. Получение смеси металл-полимер для каждого слоя осуществляется на специальных смесителях по типовой методике.

Совмещение однослойных композитов в многослойную структуру осуществляется с помощью специальных колландров, обеспечивающих требуемую механическую прочность композиции.

Измерение коэффициента отражения Котр однослойных и многослойных композиций осуществляется на установке типа Agilent E8363B PNA по типовой методике.

Примеры выполнения заявляемого изобретения представлены в таблице 1.

Таблица 1
Пример 1 Пример 2
Полимерная основа силиконовый полимер марки ОПГС силиконовый полимер марки ЭКП-102Б
Толщина слоев, мм А 0,3±0,1 0,4±0,1
В 0,7±0,2 0,8±0,2
С 4±1 3±1
D 8±1 7±1
Е 12±1 13±1
Фракционный состав слоев, мкм А 11±3 6±3
В 19±3 30±3
С 39±3 45±3
D 55±3 90±3
Е 105±3 190±3
Массовая доля частиц в слоях, масс.% 70 90
Котр, дБ Частота от 2 ГГц до 6 ГГц - не более - 13; Частота от 500 МГц до 3 ГГц - не более - 15;
Частота от 100 МГц до 2 ГГц и от 6 ГГц до 10 ГГц - не более - 10. Частота от 100 МГц до 500 МГц и от 3 ГГц до 10 ГГц - не более - 10.

Источники информации

1. Б.З. Каценеленбаум. Высокочастотная электродинамика. М.: Наука, 1966 г.

2. Б.Ф. Алимин. «Современные разработки поглотителей электромагнитных волн и радиопоглощающих материалов». Зарубежная радиоэлектроника, №2, 1989, С.75-82.

3. Уфимцев П.Я. Метод краевых волн в физической теории дифракции. М.: Советское радио, 1962, 243 с.

4. К.Н. Розанов. «Фундаментальное ограничение для ширины рабочего диапазона радиопоглощающих покрытий». Радиотехника и электроника. 1999. - Т.44, №5. - С.526-530.

5. Патент РФ №2234176 (С2) от 07.08.2002 г., опубл. 10.08.2004 г.

6. Патент РФ №2453953 (С1) от 14.06.2011 г., опубл. 20.06.2012 г.

7. Патент РК№2772520 (В1) от 11.12.1997 г., опубл. 14.01.2000 г.

8. Патент РФ №2324989 от 19.06.2006 г., опубл. 20.05.2008 г. - Прототип.

9. К.М. Lim, K.A. Lee, M.C. Kim, C.G. Park ″Complex permeability and electromagnetic wave absorption properties of amorphous alloy-epoxy composites″ // Journal of Non-Crystalline Solids 351 (2005) 75-83.


МНОГОСЛОЙНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
МНОГОСЛОЙНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 41-50 of 58 items.
25.08.2017
№217.015.b526

Сплав на основе титана

Изобретение относится к металлургии, а именно к сплавам на основе титана для изготовления труб, используемым для теплопередающих элементов водяных парогенерирующих аппаратов атомных энергетических установок, нефтеперерабатывающей и нефтехимических предприятий. Сплав на основе титана содержит,...
Тип: Изобретение
Номер охранного документа: 0002614229
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b56e

Сплав на основе ниобия для формирования 3d-изделий сложной формы и покрытий

Изобретение относится к металлургии, а именно к прецизионным сплавам для получения 3d-изделий сложной формы и функциональных покрытий методом гетерофазного переноса. Композиционный сплав на основе ниобия, используемый для формирования 3d-изделий сложной формы и термобарьерных покрытий,...
Тип: Изобретение
Номер охранного документа: 0002614230
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.c869

Способ определения термомеханических характеристик материалов с памятью формы

Изобретение относится к неразрушающему контролю материалов, обладающих эффектом памяти формы, и может быть использовано для контроля термомеханических характеристик в условиях пассивного деформирования материалов с эффектом памяти формы для определения и контроля температурных точек фазовых...
Тип: Изобретение
Номер охранного документа: 0002619046
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
29.03.2019
№219.016.ee9f

Способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров

Изобретение относится к области металлургии, в частности к производству экономнолегированной хладостойкой стали для сварных труб морских газопроводов с рабочим давлением до 19 МПа, эксплуатируемых при пониженных температурах. Техническим результатом изобретения является обеспечение высокой...
Тип: Изобретение
Номер охранного документа: 0002270873
Дата охранного документа: 27.02.2006
08.04.2019
№219.016.fed5

Сталь для корпусных конструкций атомных энергоустановок

Изобретение относится к области металлургии, а именно к конструкционным сталям, используемым для корпусных конструкций атомных энергоустановок. Сталь содержит, мас.%: углерод 0,13-0,18, кремний 0,05-0,10, марганец 0,30-0,60, хром 2,70-3,00, никель 0,60-0,80, молибден 0,60-0,80, ванадий...
Тип: Изобретение
Номер охранного документа: 0002448196
Дата охранного документа: 20.04.2012
29.04.2019
№219.017.3f4e

Сплав на основе титана

Изобретение относится к металлургии сплавов на основе титана, используемых для изготовления различных деталей и конструкций, в том числе для медицинского оборудования, инструментов и деталей, применяемых в травматологии и ортопедии. Задачей изобретения является создание сплава, обладающего...
Тип: Изобретение
Номер охранного документа: 0002293135
Дата охранного документа: 10.02.2007
29.04.2019
№219.017.43bf

Сплав на основе титана

Изобретение относится к металлургии, в частности к сплавам на основе титана, обладающим высокой стойкостью против щелевой и питтинговой коррозии, которые могут быть использованы для изготовления трубопроводов и трубных систем широкой номенклатуры в судостроении и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002426808
Дата охранного документа: 20.08.2011
Showing 41-50 of 66 items.
25.08.2017
№217.015.b526

Сплав на основе титана

Изобретение относится к металлургии, а именно к сплавам на основе титана для изготовления труб, используемым для теплопередающих элементов водяных парогенерирующих аппаратов атомных энергетических установок, нефтеперерабатывающей и нефтехимических предприятий. Сплав на основе титана содержит,...
Тип: Изобретение
Номер охранного документа: 0002614229
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b56e

Сплав на основе ниобия для формирования 3d-изделий сложной формы и покрытий

Изобретение относится к металлургии, а именно к прецизионным сплавам для получения 3d-изделий сложной формы и функциональных покрытий методом гетерофазного переноса. Композиционный сплав на основе ниобия, используемый для формирования 3d-изделий сложной формы и термобарьерных покрытий,...
Тип: Изобретение
Номер охранного документа: 0002614230
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.c869

Способ определения термомеханических характеристик материалов с памятью формы

Изобретение относится к неразрушающему контролю материалов, обладающих эффектом памяти формы, и может быть использовано для контроля термомеханических характеристик в условиях пассивного деформирования материалов с эффектом памяти формы для определения и контроля температурных точек фазовых...
Тип: Изобретение
Номер охранного документа: 0002619046
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
09.06.2018
№218.016.5a31

Многослойный магнитный и электромагнитный экран для защиты от излучения силовых кабелей

Изобретение относится к многослойным покрытиям, используемым в радиоэлектронной и приборостроительной технике, в частности, при создании экранов для защиты от воздействия внешних магнитных и электромагнитных полей естественного и искусственного происхождения различных биологических и...
Тип: Изобретение
Номер охранного документа: 0002655377
Дата охранного документа: 28.05.2018
17.08.2018
№218.016.7c48

Способ получения сотового тонкостенного энергопоглотителя с помощью лазерного спекания

Изобретение относится к технологии получения сотовых тонкостенных энергопоглотителей. Энергопоглотитель изготавливают в виде ячеистой конструкции с ячейками произвольной формы из металлического порошка дисперсностью менее 50 мкм путем его послойного 20-40 мкм лазерного сплавления по заранее...
Тип: Изобретение
Номер охранного документа: 0002664010
Дата охранного документа: 14.08.2018
19.10.2018
№218.016.9443

Способ получения этилового спирта

Изобретение относится к спиртовой промышленности. Способ получения спирта включает: разрушение зерна ржи на установке ударно-активаторного действия - дезинтеграторе до среднего размера частиц 160 мкм, смешивание с водой в соотношении 1:3,0, выдерживание при температуре 60°С в течение 2,5 ч при...
Тип: Изобретение
Номер охранного документа: 0002670156
Дата охранного документа: 18.10.2018
25.01.2019
№219.016.b41a

Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их...
Тип: Изобретение
Номер охранного документа: 0002678045
Дата охранного документа: 22.01.2019
+ добавить свой РИД