×
27.09.2014
216.012.f84f

Результат интеллектуальной деятельности: СПОСОБ ПРОГНОЗИРОВАНИЯ РАБОТОСПОСОБНОСТИ КОСМОНАВТА НА ПОВЕРХНОСТИ ПЛАНЕТЫ МАРС

Вид РИД

Изобретение

№ охранного документа
0002529404
Дата охранного документа
27.09.2014
Аннотация: Изобретение относится к медицине, а именно к физиологии. После 4-6 месяцев геоорбитального полета и посадки на Землю с перегрузкой 4 g, космонавта в первые послеполетные сутки облачают в планетарный скафандр под штатным избыточным давлением при суммативном весе космонавта и скафандра, равным 0,38 этого веса на Земле. После чего космонавт выполняет работу по сценарию деятельности на поверхности Марса, в процессе которой фиксируют частоту сердечных сокращений (ЧСС) космонавта, при достижении предельных индивидуально допустимых показателей делают перерывы в физических действиях для восстановления ЧСС до индивидуально рекомендованных медицинских показателей. Сумму продолжительности перерывов вычитают из общего времени работы. Разность определяют как «чистое» время работы. И если «чистое» время превышает или равно времени, минимально необходимого для выполнения целевых действия на поверхности Марса, уровень работоспособности принимается как удовлетворительный. Способ позволяет на Земле прогнозировать профессиональную работоспособность космонавта после межпланетного перелета и посадки на поверхность Марса за счет моделирования условий на орбите Марса. 1 табл.
Основные результаты: Способ прогнозирования работоспособности космонавта на поверхности планеты Марс, включающий выведение космонавта на геоцентрическую орбиту, геоорбитальный полет в течение 4-6 месяцев и посадку на Землю с перегрузкой 4 g, отличающейся тем, что космонавта в первые послеполетные сутки облачают в планетарный скафандр под штатным избыточным давлением, при этом система «космонавт-скафандр» весит 0,38 от веса данной системы на Земле, после чего космонавт выполняет физическую работу по сценарию деятельности на поверхности Марса, в процессе физических действий фиксируют частоту сердечных сокращений (ЧСС) космонавта и при достижении предельных индивидуально допустимых показателей делают перерывы в физических действиях для восстановления ЧСС до индивидуально рекомендованных медицинских показателей, сумму продолжительности перерывов вычитают из общего времени работы, разность определяют как «чистое» время работы, и если «чистое» время превышает или равно времени, минимально необходимого для выполнения целевых действий на поверхности Марса, уровень работоспособности космонавта принимается как удовлетворительный.

Изобретение относится к космическим технологиям, а именно к способам моделирования на Земле космической среды и деятельности космонавта во внеземных условиях.

Функциональные возможности человека в скафандре в условиях марсианского тяготения, после межпланетного перелета Земля-Марс, являются одним из факторов, который определит успех деятельности десантной группы экипажа. Только достаточное представление об ожидаемом уровне работоспособности космонавтов позволит планировать действия на поверхности планеты. Отсутствие такого прогноза ставит под вопрос сам замысел пилотируемой экспедиции на Марс.

Профессиональная работоспособность рассматривается как одно из основных социально-биологических свойств исполнителя, отражающее возможность выполнять конкретную по содержанию работу в определенных условиях деятельности в течение заданного времени и с требуемым качеством.

В публикациях, в проектах пилотируемой экспедиции на Марс не содержится должного анализа, исследования и решения проблемы работоспособности космонавтов при высадке на Марс с учетом послеполетной ортостатической неустойчивости, атаксии и других синдромов невесомости. Одним из ключевых вопросов, относящихся к моменту высадки десантной группы на поверхность Марса, заключается в следующем: сможет ли космонавт после нескольких месяцев пребывания в невесомости, без реадаптации к 0,38 g (тяготение на Марсе) поддерживать присущую человеку вертикальную позу тела, способность к пешему передвижению, противостоянию ветровым нагрузкам, характерным для атмосферы Марса, и подъему на ноги в случае падения, то есть быть физически работоспособным в марсианских условиях.

Ответ на поставленные вопросы и достоверный прогноз может быть получен при условии, если экспериментальная оценка работоспособности человека будет проводиться после его пребывания в условиях, близких к невесомости в течение достаточно продолжительного времени.

Известны следующие методы моделирования невесомости в наземных условиях, практикуемые с участием человека (аналоги):

- антиортостатическая гипокинезия (АНОГ) - размещение испытателя в горизонтальном положении с отрицательным углом наклона в сторону головы на определенный срок [1]; недостатком является отсутствие возможности отрабатывать технологические действия с оборудованием;

- частичное обезвешивание испытателя посредством системы противовесов или карданового подвеса-шарнира [2]; значительное ограничение локомоторики средствами обезвешивания, искажение ощущения невесомости;

- иммерсия - погружение в резервуар с жидкостью, плотность которой равна средней плотности тела человека [1]; использование дыхательного аппарата осложняет деятельность, мобильность в среде исключена запретом на плавательные движения;

- метод так называемой «гидроневесомости», при котором испытатель в скафандре под избыточным давлением погружается в гидросреду и системе «человек-скафандр» путем балансировки грузами придают нулевую плавучесть и безразличное равновесие [2]. При этом сам испытатель не ощущает состояния невесомости, облегчается только перемещение по поверхности макетов космических объектов, также погруженных в воду.

Кроме того, все указанные выше методы имитации невесомости неприемлемы для формирования послеполетного состояния организма и прогнозирования работоспособности на поверхности Марса, так как функционирование систем организма при использовании этих методов осуществляется под воздействием земного притяжения.

Известен метод воспроизведения невесомости в полете самолета по параболической траектории с продолжительностью до 30-40 секунд [2]. Создаются условия микрогравитации (миллионные доли земного притяжения), но ввиду кратковременности режима, состояние организма испытателя не является идентичным состоянию как после длительного полета в невесомости, отсутствует накопительный эффект воздействия невесомости. Кроме того, до и после состояния невесомости действуют перегрузки, искажающие воздействие невесомости. Данный метод не может быть применен для прогнозирования работоспособности космонавта после длительного полета.

Из анализа известных методов моделирования невесомости следует, что в условиях Земли создать искусственную микрогравитационную среду со сроком существования 4-6 месяцев, достаточных для формирования адекватного состояния организма испытателя в целях прогнозирования его работоспособности, не представляется возможным.

Прототип способа прогнозирования работоспособности космонавта на поверхности планеты Марс не выявлен.

Задача изобретения заключается в получении на Земле прогноза профессиональной работоспособности космонавта после межпланетного перелета и посадки на поверхность Марса.

Задача решается тем, что космонавта выводят на геоцентрическую орбиту и после геоорбитального полета в течение 4-6 месяцев осуществляют посадку на Землю с перегрузкой до 4 g, в первые послеполетные сутки космонавта облачают в планетарный скафандр под штатным избыточным давлением, при этом вес системы «космонавт-скафандр» составляет 0,38 от веса данной системы на Земле, после чего космонавт выполняет физическую работу по сценарию деятельности на поверхности Марса. В процессе физических действий фиксируют частоту сердечных сокращений (ЧСС) космонавта и при достижении предельных индивидуально допустимых показателей делают перерывы в физических действиях для восстановления ЧСС до индивидуально рекомендованных медицинских показателей, сумму продолжительности перерывов вычитают из общего времени работы, разность определяют как «чистое» время работы, и если «чистое» время превышает или равно времени, минимально необходимого для выполнения целевых действий на поверхности Марса, уровень работоспособности космонавта принимается как удовлетворительный.

Корректность моделирования и достоверность прогноза обосновывается воспроизведением максимального количества факторов и связей, действующих в моделируемой ситуации.

На фиг. изображена таблица, в которой показаны основные факторы и гравитационные условия, которые будут воздействовать на космонавта в реальном полете на Марс и в модельном эксперименте с оценкой степени приближения.

Правомерность отдельных допущений, принятых в моделировании, обосновывается следующим образом.

По п.2. На основе опыта длительных полетов на отечественных орбитальных станциях установлено, что степень снижения работоспособности, ортостатической устойчивости космонавтов существенно не коррелируют с продолжительностью полета, но проявляют четкую зависимость от интенсивности, вида и объема физических тренировок, выполняемых космонавтами в полете [3]. Поэтому пребывания в невесомости в течение 4-6 месяцев вполне достаточно для приведения организма космонавтов в адекватное состояние.

По п.5. и п.8. Ощущение (восприятие) земного тяготения g=1 вместо g=0,38 компенсируется сниженной продолжительностью рабочего времени с t часов на Марсе до t/2 часов в наземных условиях, что уравнивает энерготраты космонавта, который будет работать на Марсе и соответственно на Земле.

Таким образом, объективные и субъективные оценки работоспособности космонавта и результаты его деятельности на Земле являются одновременно и оценками достаточности средств и методов противостояния невесомости, имеющихся в арсенале космической медицины.

Реализация способа прогнозирования работоспособности космонавта на поверхности Марса осуществляется реально существующими средствами: отработаны выведение и посадки пилотируемых кораблей «Союз», продолжается георбитальный полет Международной космический станции со сменой экипажа, на Земле предусмотрены площадка с макетом марсианской поверхности, планетарный скафандр и средства выполнения операций по сценарию деятельности космонавтов.

Литература

1. Краткий справочник по космической биологии и медицине. Под редакцией А.И. Бурназяна и др. М.: Медицина, 1972, с.192-193, 252-253.

2. Юзов Н.И. Внекорабельная деятельность космонавтов. Звездный городок, Россия, 1998, с.207-208.

3. И.Б. Козловская и др. Развитие российской системы профилактики неблагоприятных влияний невесомости в длительных полетах//Космическая биология и медицина. Том 1. Медицинское обеспечение экипажей МКС. ИМБП, 2011, с.63-98.

Таблица
Реальный полет на Марс Модельный эксперимент Степень приближения
1 Перегрузки при выведении на ОИСЗ Перегрузки при выведении на ОИСЗ Тождественно ++++
2 Невесомость в перелете к Марсу Невесомость в течение 4-6 месяцев на геоцентрической орбите Идентично ++++
3 Медико-биологические мероприятия по предупреждению снижения гравитационной устойчивости организма Медико-биологические мероприятия по предупреждению снижения гравитационной устойчивости организма Тождественно ++++
4 Перегрузки при посадке на Марс до 4 g Перегрузки при посадке на Землю до 4 g Идентично ++++
5 Ощущение тяготения на поверхности Марса g=0,38 Ощущения тяготения на Земле g=1 Аналогично ++
6 Вес системы «космонавт-скафандр» на Марсе Вес системы «космонавт-скафандр» приводят к 0,38 веса на Земле Идентично +++
7 Штатное избыточное давление в СК Штатное избыточное давление в СК Тождественно ++++
8 Продолжительность рабочего времени t час Продолжительность рабочего времени t/2 час Аналогично +++
9 Состояние испытателя-космонавта после полета Состояние испытателя-космонавта после полета Аналогично +++

Способ прогнозирования работоспособности космонавта на поверхности планеты Марс, включающий выведение космонавта на геоцентрическую орбиту, геоорбитальный полет в течение 4-6 месяцев и посадку на Землю с перегрузкой 4 g, отличающейся тем, что космонавта в первые послеполетные сутки облачают в планетарный скафандр под штатным избыточным давлением, при этом система «космонавт-скафандр» весит 0,38 от веса данной системы на Земле, после чего космонавт выполняет физическую работу по сценарию деятельности на поверхности Марса, в процессе физических действий фиксируют частоту сердечных сокращений (ЧСС) космонавта и при достижении предельных индивидуально допустимых показателей делают перерывы в физических действиях для восстановления ЧСС до индивидуально рекомендованных медицинских показателей, сумму продолжительности перерывов вычитают из общего времени работы, разность определяют как «чистое» время работы, и если «чистое» время превышает или равно времени, минимально необходимого для выполнения целевых действий на поверхности Марса, уровень работоспособности космонавта принимается как удовлетворительный.
Источник поступления информации: Роспатент

Showing 201-210 of 370 items.
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4b3e

Приемник-преобразователь лазерного излучения

Приемник-преобразователь лазерного излучения включает приемную плоскость, выполненную в виде круговой панели. На внешней стороне панели установлены фотоэлектрические преобразователи на основе полупроводниковых фотоэлементов (ФЭ) с внутренним фотоэффектом для непосредственного преобразования...
Тип: Изобретение
Номер охранного документа: 0002594953
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d45

Электрогенерирующая сборка термоэмиссионного реактора-преобразователя (варианты)

Изобретение может быть использовано в космической технике и атомной энергетике при создании высокоэффективных космических ядерных энергетических установок на основе термоэмиссионного реактора-преобразователя. В электрогенерирующей сборке (ЭГС) термоэмиссионного реактора-преобразователя,...
Тип: Изобретение
Номер охранного документа: 0002595261
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4ec1

Система спутников наблюдения планеты

Изобретение относится к космическим спутниковым системам локального обзора. Система состоит из спутников с оптико-электронной аппаратурой дистанционного зондирования, размещенных на круговых орбитах с одинаковыми высотами и наклонениями. Восходящие узлы орбит перемещаются относительно проекции...
Тип: Изобретение
Номер охранного документа: 0002595240
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5234

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594056
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.526e

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594054
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52e2

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594057
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.535a

Фотоэлемент приёмника-преобразователя лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлементов (ФЭ). Фотоэлемент приемника-преобразователя лазерного излучения содержит полупроводниковые легированный и базовый слои р-типа и n-типа, фронтальный полосковый омический контакт на...
Тип: Изобретение
Номер охранного документа: 0002593821
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5372

Нож космонавта

Изобретение относится к космической технике. Нож для использования космонавтом в скафандре в условиях невесомости содержит ручку и ножевое полотно с режущим лезвием. В ножевом полотне имеется вырез. Вырез выполнен симметричным относительно продольной оси ножа. Внутренние стороны выреза...
Тип: Изобретение
Номер охранного документа: 0002593801
Дата охранного документа: 10.08.2016
Showing 201-210 of 289 items.
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4b3e

Приемник-преобразователь лазерного излучения

Приемник-преобразователь лазерного излучения включает приемную плоскость, выполненную в виде круговой панели. На внешней стороне панели установлены фотоэлектрические преобразователи на основе полупроводниковых фотоэлементов (ФЭ) с внутренним фотоэффектом для непосредственного преобразования...
Тип: Изобретение
Номер охранного документа: 0002594953
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d45

Электрогенерирующая сборка термоэмиссионного реактора-преобразователя (варианты)

Изобретение может быть использовано в космической технике и атомной энергетике при создании высокоэффективных космических ядерных энергетических установок на основе термоэмиссионного реактора-преобразователя. В электрогенерирующей сборке (ЭГС) термоэмиссионного реактора-преобразователя,...
Тип: Изобретение
Номер охранного документа: 0002595261
Дата охранного документа: 27.08.2016
+ добавить свой РИД