×
20.09.2014
216.012.f46e

Результат интеллектуальной деятельности: СПОСОБ АКТИВАЦИИ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ В ОБЛАСТИ КРИОГЕННЫХ ТЕМПЕРАТУР НИЖЕ КРИТИЧЕСКОГО ЗНАЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике, к средствам для использования эффекта сверхпроводимости, и может быть использовано в установках для активации высокотемпературных сверхпроводников (ВТСП). Технический результат состоит в повышении технологичности и качества процесса намагничивания. После замыкания клемм 1, 2 переключателя к ВТСП 9 подается транспортный ток от внешнего источника постоянного тока. Транспортный ток, протекая через ВТСП 9, взаимодействует с квантованными нитями магнитного потока 7 и создает силу Лоренца, которая перемещает квантованные нити магнитного потока 7 в направлении, перпендикулярном направлению течения транспортного тока. После размыкания клемм 1, 2 переключателя магнитный поток в ВТСП 9 остается захваченным центрами пиннинга. Запасаемая в ВТСП 9 электромагнитная энергия и возникающие в режиме вязкостного движения квантованных нитей магнитного потока 7 потери компенсируются внешним источником постоянного тока. Таким образом, в процессе активации происходит преобразование тепловой энергии в электрическую, ответственную за движение квантованных нитей магнитного потока 7, и в электромагнитную, ответственную за наличие положительной остаточной намагниченности ВТСП 9. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к средствам для использования эффекта сверхпроводимости и может быть использовано в установках для активации высокотемпературных сверхпроводников (ВТСП), которые могут быть массивными (синоним: объемными), толстыми или тонкими пластинами, лентами, пленками и фольгами.

Для оценки новизны и изобретательского уровня первого независимого объекта заявленного технического решения рассмотрим ряд известных из уровня техники решений аналогичного назначения.

Известен способ намагничивания (активации) ВТСП в присутствии магнитного поля, известный как режим «field cooling process», см. Вандюк Н.Ю., Манзук М.В. Исследования намагничивания иттриевой ВТСП керамики // Проблемы создания и эксплуатации новых типов электроэнергетического оборудования. Выпуск 7. - СПб. -2006. - с.139-143, основанный на использовании источника внешнего стационарного магнитного поля. Процесс активации состоит из следующих действий. ВТСП, при «комнатной» температуре (~300°К) находящийся в нормальном, т.е. несверхпроводящем состоянии, размещается на штатном месте в установке для активации. После включения источника внешнего стационарного магнитного поля ВТСП охлаждается криоагентом, вплоть до достижения температуры Т ниже критической Тс, присущей данному ВТСП. Критической температурой Тс является температура фазового перехода ВТСП из сверхпроводящего в нормальное состояние и наоборот, в зависимости от направления изменения температуры Т. В диапазоне температур от «комнатной» до критической Тс ВТСП находится в нормальном состоянии. Благодаря этому он пронизывается магнитным потоком от источника внешнего стационарного магнитного поля. Когда температура Т ВТСП становится ниже критической Тс, ВТСП переходит в сверхпроводящее состояние. Так как все ВТСП, благодаря дефектам в их структуре, являются жесткими сверхпроводниками 2-го рода, то полное выталкивание магнитного поля из объема ВТСП, согласно эффекту Мейсснера-Оксенфельда, не происходит. При выключении источника внешнего стационарного магнитного поля часть магнитного потока остается в объеме ВТСП, закрепляясь на центрах пиннинга, обеспечивая тем самым его остаточную положительную намагниченность. Пиннингом (от англ. pin - булавка) называется эффект, создаваемый естественными и/или искусственно созданными дефектами - центрами пиннинга в сверхпроводнике, который препятствует свободному перемещению квантованных нитей магнитного потока (синонимы: сверхпроводящих вихрей, вихрей Абрикосова, флюксоидов).

Недостатком данного способа является его низкая эффективность, обусловленная сложностью криостатирования активируемого ВТСП, связанного с поэтапным криогенным охлаждением для перевода ВТСП из нормального состояния в сверхпроводящее.

Известен способ активации ВТСП в нулевом магнитном поле, так называемый режим «zero field cooling process». В этом способе активации также используется источник внешнего магнитного поля, создающий стационарное магнитное поле, см. Ковалев Л.К. и др. Электромеханические преобразователи на основе массивных высокотемпературных сверхпроводников.- М: МАИ-ПРИНТ. - 2008. - с.440. Этот способ активации отличается от вышеописанного способа чередованием этапов активации. ВТСП охлаждается в отсутствие внешнего стационарного магнитного поля. После достижения температуры ВТСП ниже критической, Т<Тс, источник внешнего стационарного магнитного поля включается. Для проникновения магнитного поля в ВТСП необходимо, чтобы индукция В внешнего стационарного магнитного поля превышала магнитную индукцию поля проникновения, которая близка по значению первому (нижнему) критическому Bс1, присущему ВТСП. При В>Bc1 внешнее стационарное магнитное поле инициирует появление квантованных нитей магнитного потока в поверхностном слое ВТСП. Толщина этого поверхностного слоя зависит от эффективности центров пиннинга, которые препятствуют квантованным нитям магнитного потока распределиться равномерно по объему ВТСП. Вследствие закона электромагнитной индукции в поверхностном слое ВТСП индуцируется ЭДС, которая наводит ток, обеспечивающий экранирование от внешнего стационарного магнитного поля внутренней области ВТСП. С ростом внешнего стационарного магнитного поля возникает состояние, когда поле занимает весь объем ВТСП, а плотность экранирующего тока достигает критического значения Jc. Критической плотностью тока по определению является плотность тока Jc, при которой сверхпроводник, в данном случае ВТСП, переходит из сверхпроводящего в нормальное состояние и наоборот, в зависимости от направления изменения тока. Дальнейшее увеличение внешнего стационарного магнитного поля происходит без его экранирования.

Обратный процесс уменьшения внешнего стационарного магнитного поля происходит по сценарию прямого процесса, с той разницей, что центры пиннинга препятствуют выходу квантованных нитей магнитного потока из объема ВТСП. При нулевом значении внешнего стационарного магнитного поля ВТСП имеет положительную намагниченность. Повторная активация ВТСП или использование для этой цели более мощного источника внешнего стационарного магнитного поля принципиально не может увеличить положительную намагниченность, которая зависит исключительно от электрофизических свойств ВТСП. Недостатком этого способа активации ВТСП является то, что для его реализации требуется источник внешнего стационарного магнитного поля, создающий магнитное поле, более интенсивное, чем источник внешнего стационарного магнитного поля, применяемый в первом способе активации. В связи с этим требованием увеличиваются масса и габариты источника внешнего стационарного магнитного поля и установки для активации в целом.

Общим недостатком вышеописанных способов активации ВТСП является невозможность получения равномерно распределенного в объеме ВТСП магнитного поля. Это обусловлено тем, что намагничивание описанными выше способами описывается «моделью критического состояния», которая предопределяет возникновение пирамидальной формы остаточного магнитного поля в ВТСП. Из-за близкой к пирамидальной форме остаточного магнитного поля в намагничиваемом ВТСП средняя индукция захваченного центрами пиннинга магнитного потока существенно (примерно в два раза) снижается, что ухудшает энергетические характеристики активированных такими способами ВТСП. Кроме этого, источник внешнего стационарного или импульсного магнитного поля должен создавать магнитный поток с существенно более высокой индукцией, чем индукция магнитного поля положительной остаточной намагниченности, достигаемой в ВТСП.

В качестве ближайшего аналога выбран способ поэтапной активации ВТСП за счет использования управляемого магнитопроводящего слоя, см. патент GB №2431519, в котором описан метод активации ВТСП путем создания бегущей волны магнитного потока через площадь элемента и создания управляемого слоя магнитного материала. Способ включает неоднократное применение бегущей волны магнитного потока в сверхпроводнике. При каждом проходе бегущей волны магнитный поток в сверхпроводнике генерирует постоянный ток. Для создания волны магнитного потока применяется поле меньше, чем критическое поле сверхпроводника.

Недостатком данного способа является его нетехнологичность, обусловленная сложностью процесса активации сверхпроводника, для чего требуется размещение в криогенной зоне датчиков и сложная внешняя аппаратура управления процессом нагрева.

Для оценки новизны и изобретательского уровня второго независимого объекта заявленного технического решения рассмотрим ряд известных из уровня техники решений аналогичного назначения.

Известен индуктор для импульсного намагничивания изделий из магнитотвердых материалов, который содержит пару идентичных контурных электродов, выполненных каждый из шин с высокой проводимостью в виде совокупности коаксиальных цилиндрических дуг, смежные концевые участки которых соединены между собой попарно односторонними перемычками, образуя возвратно-поступательную спираль с внешним и внутренним выводами, при этом односторонние перемычки у каждого из контурных электродов выполнены в форме П-образных вертикально ориентированных переходов, основания каждого из которых опираются сверху на внешние горизонтальные торцы концевых участков попарно соединяемых коаксиальных цилиндрических дуг, а противолежащие друг другу внутренние выводы обоих контурных электродов и идентичные друг другу внешние выводы обоих контурных электродов и идентичные друг другу внешние выводы обоих контурных электродов выполнены в виде Г-образных шин, расположенных над внешней торцевой плоскостью соответствующих контурных электродов и присоединенных основанием вертикальных ветвей Г-образных шин к горизонтальным торцам концевых секций коаксиальных цилиндрических дуг соответствующих контурных электродов индуктора, см. патент РФ №2094878. Для работы этого устройства требуется мощный источник внешнего магнитного поля.

Известно устройство для активации сверхпроводников, в том числе ВТСП, см. Глебов И.А., Лаверик Ч., Шахтарин В.Н. Электрофизические проблемы использования сверхпроводимости. Л.: Наука, 1980, содержащее сверхпроводниковый соленоид, размещенный в криостате, выводные концы которого соединены с токовводами, к которым присоединен внешний источник постоянного тока, располагающийся вне криостата.

Недостатком данного устройства для активации сверхпроводников, в том числе ВТСП, является то, что сверхпроводниковый соленоид имеет большие массу и размеры и малый рабочий объем для размещения в нем активируемого ВТСП, что сужает номенклатуру активируемых ВТСП узлов и деталей.

Этот недостаток устраняется в устройстве для активации ВТСП, см. Coombs Т.А., Hong Z., Yan Y., Rawlings C.D. Superconductors: The Next Generation of Permanent Magnets // IEEE Transactions on Applied Superconductivity, 2008. - N. 6. October 2008. Известное устройство для активации ВТСП - сверхпроводниковая магнитная система содержит источник внешнего стационарного магнитного поля, ферромагнитный сердечник, управляемый магнитопроводящий слой, ВТСП, изоляционный слой и криогенную ванну. Управляемый магнитопроводящий слой изготовляется из материала, магнитные свойства которого изменяются от ферромагнитного состояния до диамагнитного состояния, и этим процессом можно управлять. Примером такого материала является гадолиний Gd, имеющий точку Кюри Т=289 К (16°С). Для изменения свойств управляемого магнитопроводящего слоя применяют нагреватели. Криоагент в криогенной ванне должен иметь температуру ниже критической температуры Тс ВТСП. В устройстве криоагентом служит жидкий азот, температура кипения которого равна 77,3 К, т.е. ниже критической температуры Тс активируемого ВТСП, например, из керамики YВа2Cu3O7, у которой Тс~90 К.

Устройство для активирования ВТСП - сверхпроводниковая магнитная система обеспечивает процесс активирования, который состоит из повторяющегося воздействия на ВТСП внешнего стационарного магнитного поля с малой индукцией путем волнообразного изменения магнитного потока в объеме ВТСП вплоть до достижения в нем заданного значения магнитной индукции, которое зависит от электрофизических свойств ВТСП, и работает следующим образом. Активируемый ВТСП из керамики YВа2Cu3O7 криостатируется посредством заливки жидкого азота в криогенную ванну. Температура управляемого магнитопроводящего слоя из Gd устанавливается равной 273 К (0°C). Для создания волнообразного магнитного поля, перемещающегося от краев ВТСП к его центру, температура управляемого магнитопроводящего слоя из Gd с помощью нагревателя циклически изменяется в технологическом диапазоне 289-273-289 К, переводя управляемый магнитопроводящий слой из Gd, соответственно, в диамагнитное (289 К) - ферромагнитное (273 К) - диамагнитное (289 К) состояния, и т.д. В результате магнитный поток источника внешнего стационарного магнитного поля с каждым циклом волнообразного магнитного поля увеличивает остаточную положительную намагниченность ВТСП. При этом в процессе активации индукция магнитного потока, создаваемого источником внешнего стационарного магнитного поля, всегда остается намного меньше индукции магнитного потока, захваченного центрами пиннинга ВТСП. Вместе с тем, захваченный магнитный поток, по сравнению с тремя вышеописанными способами активации, более равномерно распределяется в объеме ВТСП.

Недостатком известного устройства - сверхпроводниковой магнитной системы является сложность и ненадежность регулирования нагрева управляемого магнитопроводящего слоя в технологическом диапазоне температур и обусловленный этим недостаток качества активации сверхпроводникового слоя.

Задачей изобретения является разработка способа намагничивания ВТСП, обеспечивающего технологичность и высокое качество процесса намагничивания ВТСП в электротехнических устройствах, в которых требуется постоянная активация ВТСП по месту его штатного расположения, а также и создание устройства для реализации этого способа, имеющего улучшенные эксплуатационные характеристики, удобство монтажа и увеличенный срок службы.

Сущность первого независимого объекта изобретения выражается в следующей совокупности существенных признаков, достаточной для достижения указанного выше обеспечиваемого изобретением технического результата.

Способ активации высокотемпературных сверхпроводников в области криогенных температур ниже критического значения путем воздействия на высокотемпературный сверхпроводник стационарного магнитного поля с низкой магнитной индукцией, характеризующийся тем, что через высокотемпературный сверхпроводник пропускают постоянный электрический ток плотностью ниже критического значения Jc, а значение магнитной индукции стационарного магнитного поля устанавливают ниже второго (верхнего) критического значения Вc2. Вторым (верхним) критическим значением магнитной индукции поля является значение, при котором сверхпроводник, в данном случае ВТСП, переходит из сверхпроводящего в нормальное состояние и наоборот, в зависимости от направления изменения магнитной индукции. Постоянный ток, протекая через высокотемпературный сверхпроводник, взаимодействует с квантованными нитями магнитного потока, зарождающимися в поверхностном слое высокотемпературного сверхпроводника, перемещая их вглубь, тем самым обеспечивая активацию высокотемпературного сверхпроводника с использованием внешнего источника магнитного поля с малой индукцией и внешнего источника постоянного тока с малой плотностью тока в активируемом высокотемпературном сверхпроводнике.

Кроме того, первый независимый объект изобретения характеризуется рядом факультативных признаков, а именно:

- через высокотемпературный сверхпроводник пропускают постоянный электрический ток ниже критического значения, периодически, по меньшей мере один раз, изменяя направление тока, обеспечивая перемещение квантованных нитей магнитного потока с двух поверхностных слоев активируемого высокотемпературного сверхпроводника.

Сущность второго независимого объекта изобретения выражается в следующей совокупности существенных признаков, достаточной для достижения указанного выше обеспечиваемого изобретением технического результата.

Устройство для реализации вышеописанного способа, содержащее источник внешнего стационарного магнитного поля, ферромагнитный сердечник, криогенную ванну и высокотемпературный сверхпроводник, характеризующееся тем, что на торцах высокотемпературного сверхпроводника установлены электроды, соединенные через переключатель с источником питания.

Использование изобретения обеспечит получение технического результата, заключающегося в возможности применения новой технологии активации сверхпроводников в электрических машинах и устройствах при их сборке, ремонте и эксплуатации, в том числе после потери криоагента и его восстановления. Особенно остро проблема активации ВТСП узлов стоит для электрических машин и устройств, где ВТСП используются как постоянные магниты. Проблема активации усугубляется тем, что, во-первых, ВТСП потенциально, вследствие внутренне присущих им электрофизических свойств, могут намагничиваться до полей с индукцией 10 Тл и более, во-вторых, ВТСП узлы в процессе эксплуатации требуют периодической активации. Немалые технологические трудности вызывает сборка электрической машины и устройства, так как намагниченность имеет место только у криостатированных ВТСП, находящихся в сверхпроводящем состоянии. Технология намагничивания ВТСП узлов может реализовываться в процессе сборки электрической машины и устройства (in-situ - по месту) или после окончания монтажных работ (ex-situ - бывших на месте). В лучшем случае активацию надо производить в процессе сборки по месту (in-situ). Это обусловлено тем, что во время эксплуатации электрической машины и устройства ВТСП узлы размагничиваются из-за крипа и «течения» магнитного потока, изменяющегося внешнего (прежде всего перпендикулярного ВТСП узлу) магнитного поля, а также по причине потери криогенного охлаждения, вынуждающей осуществлять разборку и последующую сборку электрической машины или устройства.

Таким образом, техническим результатом способа и устройства намагничивания ВТСП является улучшение характеристик намагничивания ВТСП.

Сущность изобретения поясняется чертежом, где представлена электрическая схема заявленного устройства. На чертеже позициями обозначены: 1, 2, 3, 4 - клеммы переключателя, 5, 6 - выводные клеммы внешнего источника постоянного тока, 7 -квантованная нить магнитного потока, 8 - источник внешнего стационарного магнитного поля, 9 - ВТСП. На чертеже все элементы схемы, кроме ВТСП 9, располагаются вне криогенной зоны.

Заявленный способ реализуют следующим образом.

Активация ВТСП 9 осуществляется следующим образом. После замыкания клемм 1, 2 переключателя к ВТСП 9 подается транспортный ток от внешнего источника постоянного тока. Транспортный ток течет от одного края ВТСП 9 к другому. Транспортный ток, протекая через ВТСП 9, взаимодействует с квантованными нитями магнитного потока 7 и создает силу Лоренца, которая перемещает квантованные нити магнитного потока 7 в направлении, перпендикулярном направлению течения транспортного тока. Движение квантованных нитей магнитного потока 7 происходит до тех пор, пока не будет достигнуто равновесие между силами пиннинга и Лоренца. После размыкания клемм 1, 2 переключателя магнитный поток в ВТСП 9 остается захваченным центрами пиннинга. Несмотря на то, что центры пиннинга расположены в объеме ВТСП 9 хаотически, плотность магнитного потока в ВТСП 9 будет более равномерной, чем в вышеописанных случаях активации.

Запасаемая в ВТСП 9 электромагнитная энергия и возникающие в режиме вязкостного движения квантованных нитей магнитного потока 7 потери компенсируются внешним источником постоянного тока. Таким образом, в процессе активации происходит преобразование тепловой энергии в электрическую, ответственную за движение квантованных нитей магнитного потока 7, и в электромагнитную, ответственную за наличие положительной остаточной намагниченности ВТСП 9.


СПОСОБ АКТИВАЦИИ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ В ОБЛАСТИ КРИОГЕННЫХ ТЕМПЕРАТУР НИЖЕ КРИТИЧЕСКОГО ЗНАЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 41-50 of 64 items.
17.02.2018
№218.016.2e2a

Транспортная система

Транспортная система относится к области магнитолевитационной транспортной техники. Грузовая магнитолевитационная транспортная платформа транспортной системы содержит типовую фитинговую платформу 1 с морским контейнером 2, установленную на двух несущих тележках 3, снабженных боковыми...
Тип: Изобретение
Номер охранного документа: 0002643900
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.4536

Лакокрасочное супергидрофобное покрытие

Изобретение относится к лакокрасочному супергидрофобному покрытию, которое предназначено для защиты от повышенной влажности, загрязнения, развития плесени и коррозии различных поверхностей, например металла, пластика, камня и других. Покрытие выполнено из композиции, которая включает полимерную...
Тип: Изобретение
Номер охранного документа: 0002650135
Дата охранного документа: 09.04.2018
29.05.2018
№218.016.52fe

Бронезащита

Изобретение относится к средствам защиты от бронебойных пуль и снарядов, в частности к используемым для этих целей композитным броням. Бронезащита в виде совокупности бронеплиток, каждая из которых включает металлическую, полимерную или композитную подложку и скрепленный с ней слой...
Тип: Изобретение
Номер охранного документа: 0002653917
Дата охранного документа: 15.05.2018
09.06.2018
№218.016.5b51

Способ получения галогенидов тетракис(2-гидроксиэтил)аммония общей формулы [n(chchoh)]x(x=f, cl, br, i)

Изобретение относится к усовершенствованию способа получения алканоламмониевых ионных жидкостей на основе галогенидов. Описан способ получения галогенидов тетракис(2-гидроксиэтил)аммония общей формулы [N(СНСНОН)]Х (X=F, Cl, Br, I) взаимодействием триэтаноламина (изб.) с 2-бромэтанолом в...
Тип: Изобретение
Номер охранного документа: 0002655903
Дата охранного документа: 29.05.2018
28.08.2018
№218.016.800a

Способ получения дисперсных мезопористых порошков на основе оксида алюминия для носителей катализаторов

Изобретение относится к области синтеза дисперсных мезопористых материалов на основе в системе ZrO(YO)-AlO для носителей катализаторов, заявленный способ реализуют в два этапа, при этом на первом этапе в процессе совместного осаждения гидроксидов в системе ZrO-YO получают три порции...
Тип: Изобретение
Номер охранного документа: 0002665038
Дата охранного документа: 27.08.2018
14.11.2018
№218.016.9d25

Высокооборотный асинхронный двигатель

Изобретение относится к электротехники, в частности к конструкциям высокооборотных асинхронных двигателей. Технический результат – увеличение тока и МДС, индуцируемых потоком взаимоиндукции. Ротор высокооборотного асинхронного двигателя выполнен массивным, при этом на внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002672255
Дата охранного документа: 13.11.2018
03.03.2019
№219.016.d2a0

Композиция для атмосферостойкого антиобледенительного покрытия с повышенной гидрофобностью

Изобретение относится к области химии, а именно к полимерной атмосферостойкой антиобледенительной композиции с повышенной гидрофобностью. Композиция содержит связующее, состоящее из кремнийорганических полимеров - разветвленного полидиметилфенилсилоксана (ПДМФС) и линейного полидиметилсилоксана...
Тип: Изобретение
Номер охранного документа: 0002681027
Дата охранного документа: 01.03.2019
23.04.2019
№219.017.36dd

Способ получения плотной нанокерамики на основе оксида алюминия в системе alo-zro(yo)

Изобретение относится к технологии получения композиционной нанокерамики с высокими показателями микротвердости и прочности на изгиб, которая может найти широкое применение в различных областях современной техники. Способ характеризуется тем, что водные растворы солей Al(NO), ZrO(NO) и Y(NO)...
Тип: Изобретение
Номер охранного документа: 0002685604
Дата охранного документа: 22.04.2019
16.05.2019
№219.017.5237

Органосиликатная композиция для защитных электроизоляционных покрытий

Изобретение относится к лакокрасочным материалам для получения теплостойких электроизоляционных покрытий металлах и может быть использовано в электротехнике, радиоэлектронной промышленности, энергетике, машиностроении. Органосиликатная композиция содержит компоненты при следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002687443
Дата охранного документа: 13.05.2019
29.05.2019
№219.017.632b

Электрическая машина

Изобретение относится к электрическим машинам и может быть использовано, в частности, в ветроэнергетических установках и на легких транспортных средствах. В предлагаемой электрической машине магнитопровод статора выполнен в виде плоского шихтованного кольца с установленными на торцевой части...
Тип: Изобретение
Номер охранного документа: 0002688204
Дата охранного документа: 21.05.2019
Showing 41-46 of 46 items.
17.02.2018
№218.016.2e2a

Транспортная система

Транспортная система относится к области магнитолевитационной транспортной техники. Грузовая магнитолевитационная транспортная платформа транспортной системы содержит типовую фитинговую платформу 1 с морским контейнером 2, установленную на двух несущих тележках 3, снабженных боковыми...
Тип: Изобретение
Номер охранного документа: 0002643900
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.3c54

Система магнитной левитации и боковой стабилизации магнитолевитационного транспортного средства

Изобретение относится к магнитным подвескам для транспортных средств. Система магнитной левитации и боковой стабилизации магнитолевитационного транспортного средства включает в себя совокупность расположенных в криостате сверхпроводниковых рейстрековых катушек. Рейстрековые катушки выполнены из...
Тип: Изобретение
Номер охранного документа: 0002647784
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.4974

Стрелочный перевод магнитолевитационных транспортных средств

Изобретение относится к левитационным устройствам транспортных средств. Стрелочный перевод магнитолевитационных транспортных средств включает в себя прямые и ответвленные путевые треки левитации и обмотки статоров тяговых линейных синхронных двигателей. Перевод снабжен маневровыми линейными...
Тип: Изобретение
Номер охранного документа: 0002651385
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4a90

Устройство динамической стабилизации магнитолевитационного транспортного средства

Изобретение относится к области магнитных подвесок для транспортных средств. Устройство динамической стабилизации магнитолевитационного транспортного средства содержит два гетерополярных магнитных полюса, выполненных в виде сборок элементарных магнитов. Магнитные полюса расположены в одной...
Тип: Изобретение
Номер охранного документа: 0002651786
Дата охранного документа: 23.04.2018
14.03.2019
№219.016.df64

Система охлаждения вакуумного трубопровода магнитолевитационного транспорта

Изобретение относится к системам охлаждения магнитолевитационного транспорта, перемещаемого в разреженной среде. Система охлаждения вакуумного магнитолевитационного транспорта включает тепловые аккумуляторы с теплоаккумулирующей средой, в качестве которой использован плавящийся...
Тип: Изобретение
Номер охранного документа: 0002681763
Дата охранного документа: 12.03.2019
10.07.2019
№219.017.affa

Устройство преобразования электрической энергии

Изобретение относится к области электротехники и гидромашиностроения и может быть использовано в микро- и малых гидроэлектростанциях. Эксплуатация микро-ГЭС, вырабатывающих электроэнергию на малых водотоках, сопряжена с решением проблемы регулирования частоты вращения гидроагрегата. Выработка...
Тип: Изобретение
Номер охранного документа: 0002408126
Дата охранного документа: 27.12.2010
+ добавить свой РИД