×
20.08.2014
216.012.eb62

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНЫХ НАНОКРИСТАЛЛОВ ПОЛУПРОВОДНИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, при этом перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин с подсветкой галогенной лампы в смеси 48%-ного раствора HF и CHOH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм. Изобретение обеспечивает возможность получения тонких полупроводниковых нитевидных нанокристаллов диаметром менее 10 нм, равномерно распределенных по поверхности подложки и имеющих высокую поверхностную плотность. 7 пр.
Основные результаты: Способ получения нитевидных нанокристаллов полупроводниковых материалов, включающий подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, отличающийся тем, что пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин в смеси 48%-ного раствора HF и CHOH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне 10 мА/см, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.

Изобретение относится к технологии получения полупроводниковых наноструктурированных материалов предназначено для выращивания на кремниевых подложках по схеме пар→капельная жидкость→кристалл (ПЖК) тонких нитевидных нанокристаллов, равномерно распределенных по поверхности подложки и имеющих высокую поверхностную плотность.

В настоящее время известен способ создания регулярно-упорядоченных систем наноразмерных нитевидных кристаллов (НК), использующий в своей основе принцип задания одинаковых размеров частиц металла-катализатора. В [1] в процессе пиролиза моносилана (SiH4+10% Не) с малым разбросом диаметров были выращены кремниевые нанопроволоки с использованием коллоидных частиц золота на поверхности Si-SiO2. Для этого на гладкую подложку из Si-SiO2 осаждали «нанодробинки» золота диаметром 8,4±0,9 нм из раствора коллоидного золота. Затем подложку с осажденными частицами золота помещали в печь. Поперечные размеры нанокристаллов составили: 6,4±1,2 нм; 12,3±2,5 нм; 20,0±2,3 нм и 31,1±2,7 нм. Недостатками способа [1] является большой разброс по диаметрам выращиваемых кристаллов (5-30%), неравномерность распределения кристаллов по поверхности подложки и невозможность обеспечить идентичность размеров капель коллоидного золота.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен способ выращивания регулярных систем НК кремния, описанный в патенте №2117081 [2], в котором маскирование поверхности гладкой кремниевой пластины осуществляется с помощью фотолитографии фоторезистом, а металл-катализатор наносят посредством электрохимического осаждения островков из раствора электролита. Недостатком этого способа является непригодность для создания наноразмерных НК с диаметрами существенно менее 1000 нм из-за физических пределов применяемых фотолитографических методов, поскольку не удается применяемыми методами фотолитографии в фоторезисте сформировать цилиндрические отверстия диаметрами существенно менее 250 нм. А создание отверстий в фоторезисте с поперечными размерами гораздо менее 250 нм является главным необходимым условием формирования одинаковых по размеру наночастиц металла-катализатора ПЖК-роста наноразмерных нитевидных кристаллов.

Наиболее близким техническим решением, выбранным нами в качестве прототипа, является способ выращивания регулярных систем НК кремния, предложенный в патенте №2336224 [3]. Отличие этого способа состоит в том, что цилиндрические отверстия в фоторезисте создают диаметром менее 250 нм импринт-литографией, островки металла толщиной менее 12,5 нм осаждают из раствора электролита, после чего удаляют фоторезист в 5%-ном растворе плавиковой кислоты. Недостатком способа является непригодность его для создания тонких и ультратонких (единицы и десятые доли нанометра) НК полупроводниковых материалов из-за ограничений на проектные нормы элементов, формируемых импринт-литографией (достигнутое разрешение элементов в импринт-литографии для производственных изделий составляет 20-25 нм, для лабораторных образцов - 5-6 нм, а расстояние между элементами структуры 20-30 нм).

Изобретение направлено на управляемое изготовление поверхностных структур тонких и ультратонких нитевидных нанокристаллов полупроводниковых материалов.

Это достигается тем, что перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин в смеси 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см2, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.

Способ выращивания тонких и ультратонких нитевидных нанокристаллов полупроводниковых материалов, имеющих диаметр порядка единиц нанометра и менее, осуществляется следующим образом. Поверхность кремниевой пластины с кристаллографической ориентацией (111) или (100) сильно легируется фосфором. Затем при определенной плотности тока, времени процесса и заданном составе электролита осуществляется электрохимическое травление сильно легированной фосфором кремниевой пластины, являющейся анодом электрохимической ячейки. Таким образом в самой пластине формируют равномерно распределенные по ее поверхности поры или скважины с приблизительно одинаковыми диаметрами порядка единиц или десятых долей нанометра. В дальнейшем на пористую поверхность кремниевой пластины напыляется тонкая пленка металла-катализатора. Затем подложка помещается в кварцевый реактор, продуваемый водородом, нагревается до температуры роста НК. В течение нескольких минут в водороде производится разбиение тонкой пленки металла-катализатора на мелкие наночастицы, локализующиеся в порах, и сплавление наночастиц металла с подложкой. Затем в газовую фазу подается питающий материал и производится выращивание ультратонких нитевидных нанокристаллов.

Легирование фосфором определяется тем, что атомы фосфора, внедренные в кремний, являются активаторами процесса образования нанопор при последующем электрохимическом травлении, и гладкий поверхностный слой кремниевой подложки покрывается равномерным пористым слоем с размерами (радиусами) пор на уровне 3 нм или менее.

Величина удельного электрического сопротивления (0,008-0,018 Ом·см) кремния определяется тем, что при указанных значениях удельного сопротивления соответствующая концентрация атомов фосфора в кремнии обеспечивает получение нанопор с размерами 3 нм и менее, позволяющих формировать в их объеме наночастицы металла-катализатора, способствующие получению тонких и ультратонких НК. Чтобы получить нанокристал заданного диаметра, необходимо задавать в 2,5 раза больший диаметр основания НК. Нанопоры с радиусами 3 нм позволяют получать НК с диаметрами порядка 2,4 нм.

Длительность анодирования поверхности кремния не более 5 мин обусловлена необходимостью минимизации объемных размеров нанопор для последующего формирования наночастиц катализатора необходимых объемов и выращивания тонких и ультратонких НК, поскольку с увеличением времени анодирования диаметр и глубина пор увеличиваются.

Высокое качество поверхности при анодном растворении кремния обеспечивается в безводном электролите, представляющем собой раствор фтористоводородной кислоты (HF) в этаноле. Состав электролита (смесь 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1) определяется необходимостью присутствия в травящем растворе растворителя (плавиковая кислота) для растворения окиси кремния.

Плотность анодного тока на уровне 10 мА/см2 обусловлена ее оптимальным значением для получения необходимых результатов травления кремния. Меньшая плотность тока приводит только к травлению кремния и недостаточна для образования пор. Большая величина плотности тока анодизации обуславливает микроскопическую эрозию поверхности кремния.

Толщина пленки металла не более 2 нм определяется тем, что для формирования единственной капли металла-катализатора в объеме поры с радиусами на уровне 3 нм необходимо обеспечить соотношение толщина пленки -диаметр поры на уровне 0,33.

Использование предлагаемого способа позволяет существенно облегчить решение проблемы создания наноэлектронных устройств на базе ультратонких нитевидных нанокристаллов (солнечных батарей на основе модифицированных нитевидными нанокристаллами фотоэлектрических структур солнечных элементов, многоканальных полевых транзисторов с оболочковым затвором, оперативных запоминающих устройств компьютеров высокой плотности информации и др.).

Примеры осуществления способа

Пример 1

Исходные пластины кремния КДБ (100) легировались фосфором в диффузионной однозонной печи СД.ОМ-3/100 до величины удельного электрического сопротивления 0,018 Ом·см. В качестве диффузанта использовался треххлористый фосфор (ос.ч). Затем проводилось электрохимическое анодирование поверхности кремния в течение 5 мин в тефлоновой электролитической ячейке, где располагались кремниевая пластина и платиновый катод. В качестве электролита применялась смесь плавиковой кислоты (HF, 48%) и этанола (C2H5OH, 96%) в соотношении 1:1. В качестве подсветки тыльной стороны пластины использовалась галогенная лампа. После анодирования на поверхность пластины на электронно-лучевой установке ВАК-501 напылялась тонкая пленка никеля толщиной 2 нм. Подготовленные подложки разрезались и помещались в ростовую печь. В течение 2-10 минут при температуре 900-1100°C осуществлялось сплавление никеля с кремнием и формировались нанокапли расплава Ni-Si. Затем в газовую фазу подавали тетрахлорид кремния при мольном соотношении MSiCl4/MH2=0,008 и выращивали НК кремния. Время выращивания составляло (2-10) минут в зависимости от необходимой длины нанокристаллов. Кристаллы кремния имели диаметр 2,4±0,2 нм и длину ~25 нм.

Пример 2

Выращивание ультратонких нитевидных нанокристаллов проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалась электролитическая медь. Толщина тонкой пленки меди составляла 2 нм. Выращенные НК имели диаметр 2,2±0,2 нм и длину ~30 нм.

Пример 3

Выполнение изобретения осуществлялось аналогично примеру 1, но пластины кремния легировались фосфором до удельного сопротивления 0,008 Ом·см. Полученные результаты соответствовали результатам примера 1.

Пример 4

Выполнение изобретения осуществлялось аналогично примеру 1, но толщина напыляемой пленки никеля составила 1,5 нм. Полученные результаты соответствовали результатам примера 1, но диаметры выращенных нанокристаллов составляли 1,6±0,2 нм.

Пример 5

Выращивание ультратонких нитевидных нанокристаллов проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалось олово. Толщина тонкой пленки олова составляла 2 нм. Выращенные НК имели диаметр 1,4±0,2 нм и длину ~15 нм.

Пример 6

Выполнение изобретения осуществлялось аналогично примеру 1, но в газовую фазу подавали тетрахлорид кремния (SiCl4) и тетрахлорид германия (GeCl4) и выращивали НК твердого раствора SixGe1-x. Соотношение объемных концентраций SiCl4 и GeCl4 составляло 1:1. Кристаллы твердого раствора SixGe1-x имели диаметр 2,6±0,2 нм и длину ~20 нм.

Пример 7

Выполнение изобретения осуществлялось аналогично примеру 1, но в газовую фазу подавали тетрахлорид германия (GeCl4) при мольном соотношении MGeCl4/MH2=0,008 и температуре 700-800°C и выращивали НК германия. Соотношение объемных концентраций SiCl4 и GeCl4 составляло 1:1. Кристаллы германия имели диаметр 1,9±0,2 нм и длину ~28 нм.

Список использованных источников

1. Gudiksen M.S., Lieber С.М. Diameter-selective synthesis of semiconductor nanowires // J. Am. Chem. Soc; (Communication); 2000; 122 (36); pp.8801-8802.

2. Патент РФ №2117081, МПК6 C30B 029/62, 025/02 / А.А.Щетинин, В.А.Небольсин, А.И.Дунаев, Е.Е.Попова, П.Ю.Болдырев.

3. Патент РФ №2336224, МПК6 C30B 029/62, 025/00 / В.А.Небольсин, А.А.Щетинин, А.И.Дунаев, М.А.Завалишин.

Способ получения нитевидных нанокристаллов полупроводниковых материалов, включающий подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, отличающийся тем, что пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин в смеси 48%-ного раствора HF и CHOH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне 10 мА/см, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.
Источник поступления информации: Роспатент

Showing 41-50 of 247 items.
27.12.2014
№216.013.1631

Способ измерения деформаций

Изобретение относится к области экспериментальных методов исследования механических напряжений и деформаций в деталях машин и элементах конструкций и может быть использовано для определения пластических деформаций изделия в машиностроении, авиастроении и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002537105
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1719

Способ определения свойств деформирования

Изобретение относится к обработке металлов давлением, в частности к определению технологических параметров процессов, и может быть использовано при определении механических свойств листовых материалов. Плоский образец круглой формы нагружают эластичным пуансоном в круглой жесткой матрице в...
Тип: Изобретение
Номер охранного документа: 0002537341
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.171d

Способ изготовления электрода-проволоки

Изобретение относится к изготовлению пластичного проволочного электрода-инструмента, используемого при электроэрозионной, электрохимической, комбинированной прошивке глубоких отверстий малого диаметра в металлических материалах. Сначала с одного конца проволоки снижают ее диаметр на величину...
Тип: Изобретение
Номер охранного документа: 0002537345
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175b

Способ изготовления диффузионной сваркой стоистой тонкостенной конструкции из титановых листовых материалов

Изобретение может быть использовано при изготовлении слоистых тонкостенных титановых конструкций из листового материала, в частности, выпускных окон энергетических установок для вывода пучка электронов. Между технологическими листами размещают пакет, содержащий плоские решетки с мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002537407
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175c

Способ объемной штамповки на механическом прессе

Изобретение относится к обработке металлов давлением и может быть использовано при объемной штамповке на механических прессах. Устанавливают величину закрытой высоты пресса менее закрытой высоты штампа. Заготовку, расположенную на нижней половине штампа, деформируют верхней половиной штампа....
Тип: Изобретение
Номер охранного документа: 0002537408
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175d

Инструмент и способ калибровки отверстий малого сечения в форсунках

Изобретение относится к калибровке отверстий малого сечения в форсунках. Предложен инструмент в виде токопроводящей проволоки с нанесенными нетокопроводящими износостойкими твердыми узкими поясками, наружный диаметр которых уменьшается по длине проволоки пропорционально толщине наносимого...
Тип: Изобретение
Номер охранного документа: 0002537409
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175e

Электрод-инструмент для прошивки отверстий

Изобретение относится к области машиностроения и может быть использовано при прошивке отверстий преимущественно малого диаметра в металлических заготовках. Электрод-инструмент содержит металлическую рабочую часть с рабочим и технологическим торцами, выполненную с возможностью подачи в зону...
Тип: Изобретение
Номер охранного документа: 0002537410
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.177a

Способ удаления диэлектрических покрытий с металлической основы

Изобретение относится к области машиностроения и может быть использовано при удалении диэлектрических покрытий с металлических изделий путем их обработки вращаемым непрофилированным электродом-щеткой. В способе электрод-щетку с ворсом в виде радиальных проволок перед обработкой устанавливают с...
Тип: Изобретение
Номер охранного документа: 0002537438
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b4

Устройство для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537496
Дата охранного документа: 10.01.2015
Showing 41-50 of 290 items.
27.05.2014
№216.012.ca23

Ротор сегментного ветроэлектроагрегата

Изобретение относится к области ветроэнергетики. Ротор сегментного ветроэлектрогенератора содержит ступицу, лопасти, обод и ферромагнитные тела, установленные на ободе. Ферромагнитные тела выполнены в виде отрезков труб прямоугольного профиля. Средняя часть отрезков имеет выборку трех сторон...
Тип: Изобретение
Номер охранного документа: 0002517513
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cbb9

Полупроводниковый фотопреобразователь

Изобретение относится к полупроводниковой технике, а именно к фотоэлектрическим преобразователям (ФП) для прямого преобразования солнечной энергии в электрическую энергию. Область применения - возобновляемые источники энергии. Согласно изобретению в полупроводниковом ФП, состоящем из...
Тип: Изобретение
Номер охранного документа: 0002517924
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cbd2

Камера жидкосного ракетного двигателя

Изобретение относится к области ракетной техники. Камера жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока. Полки двутавровых проставок выполнены переменной...
Тип: Изобретение
Номер охранного документа: 0002517949
Дата охранного документа: 10.06.2014
10.07.2014
№216.012.da9c

Автомобильный генератор

Изобретение относится к области электротехники, в частности к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа, работающим преимущественно на выпрямительную нагрузку, применяемым в генераторных установках автотракторной техники. Технический результат,...
Тип: Изобретение
Номер охранного документа: 0002521742
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db43

Грейферная подача для перемещения деталей в прессе

Изобретение относится к грейферным транспортирующим устройствам многопозиционных процессов, преимущественно кривошипных горячештамповочных. Подача содержит неподвижное основание, грейферные захваты, механизм перемещения грейферных захватов вдоль позиций пресса, механизм их вертикального...
Тип: Изобретение
Номер охранного документа: 0002521909
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db48

Износостойкое наноструктурное покрытие

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Износостойкое наноструктурное покрытие выполнено из нанокомпозиционного металл-керамического материала,...
Тип: Изобретение
Номер охранного документа: 0002521914
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db62

Способ струйной электрохимической обработки

Изобретение относится к струйной электрохимической обработке деталей из металлических материалов. Способ включает электрохимическую обработку металлической детали при подаче струи жидкости с пористыми токопроводящими гранулами, которые предварительно насыщают газообразными продуктами...
Тип: Изобретение
Номер охранного документа: 0002521940
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db63

Способ магнитно-импульсной обработки деталей

Изобретение относится к машиностроению и может быть использовано при стабилизации геометрии деталей за счет выравнивания остаточных напряжений в их поверхностном слое, в том числе при сложной форме участка обработки. Способ включает обработку детали импульсами тока, осуществляемую индуктором с...
Тип: Изобретение
Номер охранного документа: 0002521941
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dbc5

Цифровой демодулятор сигналов с частотной модуляцией

Цифровой демодулятор сигналов с частотной модуляцией относится к области радиотехники и может быть использован в устройствах приема дискретной и аналоговой информации для цифровой демодуляции сигналов с частотной модуляцией или манипуляцией (ЧМ). Достигаемый технический результат - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002522039
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dbd4

Мобильный модуль автоматизированной клепки панелей

Изобретение относится к области авиастроения и может быть применено для клепки панелей в сборочных приспособлениях. Мобильный модуль содержит гидропресс, стержень-ловитель и расклепывающее устройство. Также он снабжен блоком перемещения гидропресса, соединенным с ним посредством тросовой...
Тип: Изобретение
Номер охранного документа: 0002522054
Дата охранного документа: 10.07.2014
+ добавить свой РИД