×
20.08.2014
216.012.eaf1

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВ И ПЛИТ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в морской и авиакосмической технике, транспортном и химическом машиностроении, в т.ч. в криогенной технике, например судах-газовозах для перевозки сжиженных при низких температурах газов. Способ включает получение слитка из алюминиевого сплава, содержащего магний и скандий, методом полунепрерывного литья, гомогенизирующий отжиг при температуре 300-360°C продолжительностью до 8 часов, механическую обработку слитка, нагрев литых заготовок под прокатку при 340-380°C до 8 часов, горячую прокатку с получением листа или плиты и последующий отжиг при температуре 380-440°C до 4 часов. Способ обеспечивает получение высоких механических свойств при комнатной и низких (криогенных) температурах. 1 пр., 1 табл.
Основные результаты: Способ изготовления горячекатаных листов из деформируемых термически неупрочняемых алюминиевых сплавов, содержащих магний и скандий, включающий получение слитков методом полунепрерывного литья, гомогенизацию слитков, механическую обработку слитков, нагрев литых заготовок и их горячую прокатку, отличающийся тем, что гомогенизацию слитков ведут при температуре 300-360°C продолжительностью до 8 часов, нагрев литых заготовок под прокатку ведут при температуре 340-380°C продолжительностью до 8 часов, после чего осуществляют отжиг горячекатаных листов при температуре 380-440°C продолжительностью до 4 часов.

Изобретение относится к области деформируемых термически неупрочняемых алюминиевых сплавов со скандием, предназначенных для использования в качестве конструкционного материала в виде деформируемых полуфабрикатов в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности, в т.ч. для перевозки сжиженных газов, в транспортном машиностроении и т.д.

Существует ряд деформируемых термически неупрочняемых алюминиевых сплавов, легированных магнием, марганцем, цирконием и другими переходными металлами, из которых наиболее прочными являются сплавы системы Al-Mg-Sc.

Основными механизмами упрочнения сплавов этой системы являются твердорастворный, дисперсионного твердения за счет скандиевой фазы и структурного упрочнения вследствие повышения температуры рекристаллизации. Степень упрочнения определяется температурным воздействием в процессе производства полуфабрикатов, при гомогенизации слитка, при нагреве литой заготовки перед прокаткой и отжиге горячекатаного полуфабриката, а также величиной деформации.

Скандий наряду с другими легирующими элементами (Mg, Mn, Zr, Ti, Be и др.) в процессе плавления образует гомогенный расплав и после затвердевания слитка находится в пересыщенном твердом растворе, небольшая часть скандия, а также циркония и титана, при этом расходуется на модифицирование слитка. Прочность металла на этом этапе определяется твердорастворным механизмом упрочнения.

В процессе последующих нагревов слитка при гомогенизации и под прокатку происходит процесс высокотемпературного распада пересыщенного твердого раствора скандия в алюминии с образованием дисперсных выделений скандиевой фазы, прочность металла значительно увеличивается в результате дисперсного упрочнения. Наибольший упрочняющий эффект достигается при размере дисперсных выделений скандиевой фазы примерно в пределах от 8 до 60 мкм.

Температура обработки сплава в процессе отжигов и нагрева под прокатку не должна быть выше той, при которой происходит разупрочнение сплава в связи с коагуляцией выделений скандиевой фазы.

Температура нагрева литых заготовок из алюминиевых сплавов со скандием под горячую деформацию должна быть по возможности низкой с точки зрения сохранения прочностных свойств полуфабриката и в то же время обеспечивать достаточную пластичность обрабатываемого материала.

Структурное упрочнение происходит в результате пластической деформации и получения нерекристаллизованной фрагментированной структуры листов и плит из алюминиевых сплавов со скандием.

Известен способ получения катаных полуфабрикатов из алюминиевых сплавов системы Al-Mg-Sc, принятый нами за прототип (автореферат диссертации Филатова Ю.А. на соискание ученой степени доктора технических наук «Исследование и разработка новых высокопрочных свариваемых сплавов на основе системы Al-Mg-Sc и технологических параметров производства из них деформированных полуфабрикатов», ОАО «Всероссийский институт легких сплавов», Москва, 2000 г.), который заключается в гомогенизирующем отжиге слитков, полученных методом полунепрерывного литья, при температуре 350-370°С в течение до 24 часов, механической обработке слитков, нагреве литых заготовок под прокатку при температуре 380-410°С в течение 16 часов и последующей горячей прокатке литых заготовок.

Недостатком этого способа является:

- недостаточно высокий уровень механических свойств алюминиевых сплавов системы Al-Mg-Sc в катаных полуфабрикатах вследствие продолжительного нагрева при температурах выше 350°С;

- наличие грубых первичных интерметаллидов, выделившихся при литье слитка из твердого раствора в алюминии марганца, циркония и титана, которые являются центрами концентраций напряжений, что ведет к снижению механических свойств.

Техническим результатом предложенного изобретения является создание способа изготовления горячекатаных полуфабрикатов, листов и плит, из алюминиевых сплавов, обеспечивающего регламентировано высокие механические свойства листов и плит при комнатной и криогенных температурах, который достигается снижением температуры и продолжительности нагрева слитков при повышенной температуре в процессе изготовления горячекатаных полуфабрикатов и использования последующего кратковременного отжига горячекатаных полуфабрикатов.

Технический результат достигается тем, что изготовление горячекатаных полуфабрикатов из алюминиевых сплавов, включающего получение слитков методом полунепрерывного литья, гомогенизирующий отжиг слитков, механическую обработку слитков, нагрев литых заготовок под прокатку и горячую прокатку литых заготовок, согласно изобретению гомогенизирующий отжиг слитков проводят при температуре 300-360°С продолжительностью до 8 часов, нагрев литых заготовок под прокатку при температуре 340-380°С продолжительностью до 8 часов и отжиг горячекатаных плит при температуре 380-440°С продолжительностью до 4 часов.

Отжиг слитков при температуре 300-360°С продолжительностью до 8 часов достаточен для снятия остаточных напряжений, возникающих в слитке при его охлаждении в процессе полунепрерывного литья. Это предотвращает появление трещин и позволяет проводить механическую обработку слитков перед прокаткой для удаления с поверхности дефектов литейного происхождения.

В процессе отжига при температуре 300-360°С скандий в основном находится в твердом растворе процесс распада твердого раствора и выделения из него дисперсных частиц скандиевой фазы при этих температурах носит замедленный характер.

Повышение температуры отжига слитков свыше 360°С с увеличением продолжительности нагрева, как отмечалось ранее, ускоряет процесс выделений дисперсных частиц скандиевой фазы в слитках и их коагуляцию, что в итоге приводит к снижению механических свойств полуфабрикатов.

Снижение температуры отжига до температуры менее 300°С значительно увеличивает продолжительность отжига для снятия остаточных термических напряжений, и процесс отжига становится экономически невыгоден.

Температура нагрева литых заготовок под прокатку в пределах 340-380°С соответствует области технологической пластичности сплава со скандием, и снижение температуры нагрева по сравнению с прототипом позволит замедлить процесс распада твердого раствора и выделения дисперсных частиц скандиевой фазы и их коагуляции. Снижение температуры нагрева под прокатку менее 340°С сопровождается увеличением прочностных свойств сплава и соответственно значительным сопротивлением деформации, что затрудняет или делает невозможным процесс прокатки.

Помимо температуры нагрева на динамику процесса выделений частиц скандиевой фазы и их роста влияет продолжительность нагрева.

Увеличение общей продолжительности нагрева литых заготовок во время отжига и перед прокаткой свыше 16 часов приводит к коагуляции дисперсных частиц и снижению механических свойств катаных полуфабрикатов.

Гомогенизирующий отжиг слитков при температурах 300-360°С и их нагрев под прокатку при температурах 340-380°С при ограничении продолжительности нагрева позволяет предотвратить не только коагуляцию дисперсных частиц скандиевой фазы, но и затормозить сам процесс распада твердого раствора и выделений дисперсных частиц скандиевой фазы.

Ограниченный 4 часами во времени отжиг горячекатаных плит при температурах 360-440°С позволяет обеспечить:

- Полный распад твердого раствора скандия в алюминии;

- Контроль степени коагуляции дисперсных частиц скандиевой фазы, получая требуемый размер дисперсных частиц, изменяя температуру нагрева и время выдержки при температуре отжига. Это позволяет получать катаные полуфабрикаты с регламентируемым сочетанием прочностных и пластических свойств;

- Растворение грубых включений интерметаллидов переходных металлов (марганца, хрома, циркония и др.), которые являются концентраторами напряжений и оказывают отрицательное влияние на механические свойства полуфабрикатов;

- Растворение 8-фазы, выделившегося из пересыщенного магнием твердого раствора, что обеспечивает высокие коррозионные свойства.

Таким образом, предложенный способ изготовления горячекатаных полуфабрикатов замедляет процесс распада твердого раствора скандия в алюминии и коагуляцию дисперсных частиц скандиевой фазы и сохраняет размеры частиц менее критического размера и позволяет получать регламентировано высокий уровень механических и требуемое сочетание прочностных и пластических свойств полуфабрикатов (при комнатной и криогенных температурах).

Пример

С использованием технического алюминия А85, магния Мг90, двойных лигатур алюминий-марганец, алюминий-бериллий, алюминий-цирконий, алюминий-скандий, алюминий-хром и алюминий-титан в электропечи готовили расплав и методом полунепрерывного литья отливали плоские слитки сечением 65×240 мм из алюминиевого сплава следующего состава: масс.% 6,3 Mg-0,64 Mn-0,15 Cr-0,15 Zr-0,16 Sc-0,026 Ti, остальное - алюминий.

В соответствии с предложенным способом слитки для снятия остаточных напряжений отжигались в шахтной электропечи с принудительной вентиляцией воздуха при температурах 300 и 360°С в течение 8 часов, с охлаждением на воздухе, после разрезки слитков на заготовки шириной по 300 и 200 мм, заготовки механически обрабатывались. Боковые поверхности заготовок фрезеровались на глубину 5,0 мм, а на малых гранях заготовок фрезеровали замок Петрова.

Перед прокаткой заготовки нагревались в электрической печи при температуре 340 и 380°С в течение 8 и 6 часов соответственно.

По запредельному варианту слитки отжигались при температурах 380 и 280°С в течение 10 и 12 часов соответственно, литые заготовки перед прокаткой нагревались при температурах 320 и 400°С в течение 10 часов.

Прокатка заготовок после нагрева при температуре 380°С производилась поперек оси слитка на реверсивном стане ДУО 600 на толщину 10 мм с суммарной относительной деформацией 85%. После нагрева заготовки при температуре 320°С выкатать лист толщиной 10 мм не удалось

После прокатки заготовок, нагретых при температуре 380°С, были изготовлены листы толщиной 10 мм, шириной 300 мм, длиной 1700 мм.

В соответствии с прототипом слитки, полученные методом полунепрерывного литья, подвергались гомогенизирующему отжигу в шахтной электропечи с принудительной вентиляцией воздуха при температуре 370°С в течение 24 часов с последующим охлаждением на воздухе. После разрезки слитков на заготовки и их механической обработки заготовки нагревались в электропечи при температуре 400°С в течение 14 часов, прокатка заготовок производилась по режиму аналогичному в предлагаемом способе на толщину 10 мм.

Из полученных плит вырезались пятикратные образцы для испытания на растяжение при комнатной и криогенных температурах.

Результаты механических испытаний образцов, вырезанных из плит, полученных по предлагаемому способу и по прототипу, приведены в таблице.

Как видно из приведенных данных у горячекатаных плит, изготовленных по предлагаемому способу, механические свойства выше, чем у прототипа, особенно это преимущество проявляется при криогенных температурах (-153 - -253°С).

Механические свойства горячекатаных листов, изготовленных по предлагаемому способу и прототипу
Варианты Параметры способа Т°С испытания Механические свойства
Отжиг слитков Нагрев для прокатки Отжиг ГК плит
Т°С час Т°С час Т°С τ, час σв, МПа σ0,2, МПа δ, % ψ, %
Предлагаемый способ 20 445 322 19,8 32,7
300 8 380 6 380 4 -60 459 335 20,8 33,5
-196 574 402 21,2, 22,8
20 425 312 20,8 32
360 6 340 8 440 2 -60 439 315 21,4 30,5
-196 562 394 24,2 24,8
Запредельный способ 20 388 240 18,6 34
380 10 400 10 460 5 -60 394 252 19,0 33,8
-196 480 320 19,8 29,0
20
280 12 320 10 - - -60 - - - -
-196
Прототип 406 280 18,8 34,6
370 24 400 14 - - 424 290 19,4 34,2
- 480 345 20,4 32,2
Примечание:
В таблице приведены средние значения результатов испытаний 3 образцов на точку. После нагрева при 320°С прокатка заготовки не удалась

Технико-экономический эффект от использования изобретения по сравнению с прототипом заключается в повышении прочностных и снижении массогабаритных характеристик конструкций за счет увеличения механических свойств листов и плит, особенно при низких температурах, и в расширении областей применения деформируемых термически не упрочняемых алюминиевых сплавов в морской и авиа космической технике, транспортном и химическом машиностроении, в криогенной технике, например, в корпусных конструкциях по хранению и перевозке сжиженного газа при низких температурах и в нагруженных конструкциях двойного назначения

Источник поступления информации: Роспатент

Showing 71-80 of 254 items.
20.07.2014
№216.012.ddbc

Способ изготовления стеклокерамического материала кордиеритового состава

Изобретение относится к производству высокотермостойких керамических материалов, используемых в изделиях радиотехнического назначения. Технический результат изобретения заключается в снижении диэлектрической проницаемости и тангенса угла диэлектрических потерь. В качестве исходного сырья...
Тип: Изобретение
Номер охранного документа: 0002522550
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df4c

Комплект спецодежды

Изобретение относится к швейной промышленности, а именно к пыле-, вибро- и травмозащитной одежде, предназначенной для работников угольной промышленности. Комплект спецодежды состоит из комбинезона и съемного шлема, при этом нижние части рукавов и штанин комбинезона имеют герметизирующие...
Тип: Изобретение
Номер охранного документа: 0002522950
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e2d5

Способ приготовления абразивной массы для высокопористого инструмента

Изобретение относится к технологии производства абразивных инструментов из зерна электрокорунда белого на керамических связках. Способ включает дозированную загрузку и перемешивание сыпучих компонентов: абразивных зерен электрокорунда белого, керамической связки и наполнителя в виде...
Тип: Изобретение
Номер охранного документа: 0002523859
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e2d9

Способ изготовления абразивного инструмента

Изобретение относится к технологии производства абразивного инструмента на керамических связках. Способ включает приготовление формовочной массы, содержащей абразивные зерна электрокорунда или карбида кремния, керамическую связку, клеящие и увлажняющие добавки и наполнитель в виде...
Тип: Изобретение
Номер охранного документа: 0002523863
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e659

Пневмосистема для судна с воздушными кавернами на днище

Изобретение относится к области судостроения и касается проблемы снижения гидродинамического сопротивления водоизмещающего судна. Судно оборудовано подвижными кавернообразующими элементами, состоящими из продольных ограничительных килей правого и левого бортов, продольных промежуточных килей,...
Тип: Изобретение
Номер охранного документа: 0002524762
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e9ad

Стенд для измерения массы и координат центра масс изделий

Изобретение относится к области измерительной техники и может быть использовано для электрических измерений механических величин в космической технике, судостроении и авиастроении. Стенд содержит раму, к которой крепится изделие, динамометрическую платформу с установленным на ней узлом поворота...
Тип: Изобретение
Номер охранного документа: 0002525629
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eaa4

Сплав на основе меди

Изобретение относится к прецизионным сплавам на основе меди для получения микро- и нанопроводов, а также тонких пленок и покрытий с отрицательным температурным коэффициентом сопротивления (ТКС). Сплав содержит, мас.%: марганец 18,0-22,0; никель 18,0-25,0; кремний 2,0-4,0; бор 1,5-4,0; германий...
Тип: Изобретение
Номер охранного документа: 0002525876
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ed19

Способ создания потока газа в гиперзвуковой аэродинамической трубе и аэродинамическая труба

Группа изобретений относится к гиперзвуковым аэродинамическим трубам (АДТ). Способ включает генерацию газа высокого давления из жидкого газа путем его газификации, регулирование давления и нагрев газа, охлаждение стенок сопла, рабочей части и диффузора, охлаждение рабочего газа в...
Тип: Изобретение
Номер охранного документа: 0002526505
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ee96

Способ контроля работоспособности измерительного тракта в натурных условиях и гидрофонный тракт для его реализации

Изобретения относятся к измерительной технике и метрологии и могут быть использованы для проверки работоспособности измерительных трактов (ИТ), работающих в тяжелых рабочих условиях. Техническим результатом, получаемым от внедрения изобретения, является контроль работоспособности ИТ. Данный...
Тип: Изобретение
Номер охранного документа: 0002526897
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ef31

Способ изготовления высокопористого абразивного инструмента

Изобретение относится к технологии производства высокопористого абразивного инструмента на керамических связках. Способ включает приготовление формовочной массы, содержащей абразивные зерна электрокорунда или карбида кремния, керамическую связку, клеящие и увлажняющие добавки и смесь...
Тип: Изобретение
Номер охранного документа: 0002527052
Дата охранного документа: 27.08.2014
Showing 71-80 of 196 items.
10.02.2014
№216.012.9ea1

Способ выявления кишечных вирусов в клинических образцах и воде методом мультиплексной пцр с детекцией в режиме реального времени и перечень последовательностей для его осуществления

Изобретение относится к области лабораторной диагностики, медицинской вирусологии, молекулярной биологии и эпидемиологии. Изобретение предназначено для выявления и идентификации в клинических образцах и элюатах, полученных в результате концентрирования из воды, одиннадцати групп кишечных...
Тип: Изобретение
Номер охранного документа: 0002506317
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a26c

Высокопрочная хладостойкая arc-сталь

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой высокопрочной стали с улучшенной свариваемостью для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002507295
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a26d

Хладостойкая arc-сталь высокой прочности

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой стали высокой прочности и улучшенной свариваемости для применения в судостроении, мостостроении и других отраслях промышленности. Сталь содержит компоненты в следующем соотношении, % мас:...
Тип: Изобретение
Номер охранного документа: 0002507296
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a2de

Выгораемое сопло комбинированного ракетно-прямоточного двигателя

Изобретение относится к машиностроению, а именно к комбинированным ракетно-прямоточным двигателям. Выгораемое сопло комбинированного ракетно-прямоточного двигателя размещено во внутренней полости сопла маршевого режима и выполнено из двух элементов, соединенных друг с другом с возможностью...
Тип: Изобретение
Номер охранного документа: 0002507409
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a9bf

Износостойкий сплав для высоконагруженных узлов трения

Изобретение относится к области порошковой металлургии и предназначено для производства износостойких сплавов на основе карбонитридов титана, работающих в сложных условиях динамического нагружения, высоких контактных давлений и скоростей. Износостойкий сплав для высоконагруженных узлов трения...
Тип: Изобретение
Номер охранного документа: 0002509170
Дата охранного документа: 10.03.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cbd4

Цифровой предохранительный клапан непрямого действия с электроуправлением

Изобретение относится к области машиностроения, в частности к программируемым гидроприводам механообрабатывающего оборудования с числовым программным управлением. Цифровой предохранительный клапан непрямого действия с электроуправлением содержит основной каскад с корпусом, в последнем выполнены...
Тип: Изобретение
Номер охранного документа: 0002517951
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d021

Гибридная фоточувствительная схема (гфс)

Изобретение относится к области полупроводниковой электроники и может быть использовано при создании многоспектральных и многоэлементных фотоприемников. Гибридная фоточувствительная схема содержит алмазный матричный фотоприемник (МФП), индиевые столбики и кремниевый мультиплексор с...
Тип: Изобретение
Номер охранного документа: 0002519052
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d13e

Коррозионностойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к коррозионно-стойким аустенитным хромоникелевым сталям, применяемым при производстве высокопрочного сортового проката. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,01-0,1, кремний 0,5-1,0, марганец 1,0-5,0, хром...
Тип: Изобретение
Номер охранного документа: 0002519337
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d6db

Топка с циркулирующим кипящим слоем

Изобретение относится к области энергетике и может быть использовано для сжигания энергетических твердых топлив низкого качества, а также в химической, нефтехимической и других отраслях промышленности. Топка с циркулирующим кипящим слоем включает камеру сгорания с устройством для ввода топлива,...
Тип: Изобретение
Номер охранного документа: 0002520781
Дата охранного документа: 27.06.2014
+ добавить свой РИД