×
20.07.2014
216.012.e25d

Результат интеллектуальной деятельности: МНОГОХОДОВАЯ ФОКУСИРУЮЩАЯ СИСТЕМА И СПОСОБ ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ МНОГОКРАТНОЕ ПРОХОЖДЕНИЕ ЛАЗЕРНОГО ПУЧКА ЧЕРЕЗ ИЗМЕРИТЕЛЬНЫЙ ОБЪЕМ

Вид РИД

Изобретение

Аннотация: Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из которых содержит два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и линзу между ними, установленную на двойном фокусном расстоянии по ходу пучка от измерительного объема. Сборки обеспечивают фокусировку отраженного пучка в той же точке. Одна сборка, содержащая линзу и плоское зеркало или только вогнутое зеркало, направляет лазерный пучок так, что он проходит весь свой путь в обратном направлении, при этом число проходов равно от 4 и более в зависимости от числа установленных сборок оптических элементов. Технический результат - повышение интенсивности полезного сигнала и уменьшение оптических искажений лазерного пучка за счет многократного прохождения лазерного пучка через измерительный объем. 2 н.п. ф-лы, 2 ил.

Изобретение относится к оптическому приборостроению, в частности к осветительным системам, предназначенным для фокусировки лазерного излучения. Изобретение может быть использовано при исследовании свойств газовых сред, в том числе с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света.

Информацию о параметрах среды, исследуемой спектроскопическими методами, в частности методом спонтанного комбинационного рассеяния света (СКР), получают, используя форму и амплитуду регистрируемых спектров. Спектры СКР возбуждают излучением лазера с фиксированной частотой, например, ω0, которое фокусируют и направляют в исследуемую среду. В результате взаимодействия светового пучка с исследуемой средой происходит рассеяние - возникает излучение, распространяющееся во всех направлениях. В его спектре содержатся новые компоненты, с частотами ω=ω0±Ω, где Ω - колебательная или вращательная частоты молекул всех газов, входящих в состав исследуемой среды. Интенсивность комбинационных линий в спектре рассеянного света очень мала - приблизительно в 10 раз меньше интенсивности лазерного излучения, что серьезно затрудняет их регистрацию.

Один из методов решения проблемы усиления слабого светового сигнала заключается в использовании большого числа проходов лазерного излучения через объект исследования.

Известен способ, применявшийся во многих работах, например, в [М.С.Drake and G.M. Rosenblatt Rotational Raman Scattering from Premixed and Diffusion Flames // Combustion and Flame, 1978, v.33, p.179-196], когда используется возвращающее зеркало для отражения лазерного излучения в обратном направлении.

Недостатком описанного способа является ограниченная возможность увеличить интенсивность сигнала только в два раза за счет двойного прохождения излучения лазера через измерительный объем, из-за того, что падающий и отраженный пучки совмещены друг с другом.

Известен способ, также применявшийся многими исследователями, например [J.J.Barrett, in: Laser Raman Gas Diagnostics, Ed. by M. Lapp and CM. Penney, Plenum Press, N.Y. (1974), pp.63-85], при котором исследуемая среда помещается внутрь резонатора лазера. В этом случае интенсивность возбуждающего излучения, а, следовательно, и сигнала возрастает примерно в 10 раз.

Недостатком описанного способа является то, что его эффективность высока только в схемах с непрерывными лазерами, в которых существенно различается интенсивность излучения внутри и вне резонатора. Кроме того, внутрирезонаторная схема, где излучение совершает большое число проходов, оказывается очень чувствительной к оптическим неоднородностям исследуемой среды, способным даже сорвать генерацию.

Наиболее близким по технической сущности к заявляемому устройству является многоходовая зеркальная система высокого пространственного разрешения [Патент RU №2025750, C1, G02B 17/06, 08.01.1990], содержащая источник и приемник излучения, расположенные симметрично относительно плоскости, проходящей через оптическую ось, на которой установлены два противостоящих зеркальных объектива, а также два отражателя, оптически сопряженные между собой через соответствующий зеркальный объектив. С целью повышения светосилы и упрощения конструкции системы отражатели выполнены вогнутыми со сферическими поверхностями и расположены относительно зеркальных объективов на расстоянии, равном радиусам кривизны сферических поверхностей, при этом отражатели расположены противоположно друг другу относительно плоскости симметрии приемника и источника излучения вне зоны прохождения световых лучей между зеркальными объективами.

Недостатком этого устройства является использование сферических зеркал для отражения внеосевых пучков, что приведет к астигматизму и, следовательно, к снижению качества фокусировки. Присутствие оптических элементов между фокусирующим объективом и измерительным объемом затрудняет размещение крупного исследуемого объекта внутри такой осветительной системы. Это устройство может применяться в схеме пропускания и поглощения излучения, но оно будет иметь ограничения в схеме рассеяния, когда используют все три ортогональные координаты: по одной оси направляют лазерный пучок, по другой собирают рассеянный свет, по третьей ориентируют исследуемую горелку, например.

Задачей заявляемого изобретения является повышение эффективности использования лазерного излучения, т.е. повышение интенсивности полезного сигнала и уменьшение оптических искажений лазерного пучка, которое достигается многократным прохождением лазерного излучения через измерительный объем.

Поставленная задача решается тем, что многоходовая фокусирующая система, содержащая линзы для фокусировки лазерного пучка и зеркала для его возврата в измерительный объем, в котором происходит взаимодействие света с газовой средой, согласно изобретению включает размещенные на общем основании одну и более способных перемещаться в направлении к точке фокуса сборок оптических элементов, каждая из которых содержит два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и перефокусирующую линзу между ними, установленную соосно с отраженным лазерным пучком на двойном фокусном расстоянии по ходу пучка от измерительного объема, установленных в положениях, обеспечивающих фокусировку отраженного пучка в той же точке, и одну сборку, содержащую линзу и плоское зеркало или только вогнутое зеркало, направляющую лазерный пучок так, что он проходит весь свой путь в обратном направлении, при этом число проходов равно от 4 более в зависимости от числа установленных сборок оптических элементов.

В многоходовой фокусирующей системе сборки оптических элементов располагают вплотную друг к другу.

В многоходовой фокусирующей системе реализуют способ фокусировки лазерного излучения, обеспечивающий многократное прохождение лазерного пучка через измерительный объем системой линз и зеркал, заключающийся в том, что излучение лазера поляризуют перпендикулярно плоскости основания многоходовой системы, лазерный пучок распространяется в одной плоскости, параллельной плоскости основания многоходовой системы, прошедший через объект исследования лазерный пучок попадает на сборку оптических элементов, включающую два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и перефокусирующую линзу между ними, установленную соосно с отраженным лазерным пучком на двойном фокусном расстоянии по ходу пучка от измерительного объема, обеспечивающую перефокусировку пучка без изменения размера перетяжки, и возвращается в область измерений по другому пути, таким образом, лазерный пучок последовательно проходит одну и более сборок оптических элементов и попадает на сборку, содержащую линзу и плоское зеркало или только вогнутое зеркало, затем возвращается, проходя весь пройденный путь в обратном направлении, при этом число проходов составляет 4 и более в зависимости от числа пройденных сборок оптических элементов.

На фиг.1 представлена принципиальная схема устройства. Система содержит линзу 1, фокусирующую подаваемое на нее лазерное излучение с частотой ω0, а также сборки оптических элементов 2, включающие в себя поворотные зеркала 3 и перефокусирующие линзы 4, и сборку 2', включающую в себя еще одну линзу 1 и зеркало 5, возвращающее лазерное излучение.

Устройство работает следующим образом.

Лазерное излучение фиксированной частоты ω0 фокусируют линзой 1 в объекте исследований. Излучение лазера поляризуют перпендикулярно плоскости основания многоходовой системы, а лазерный пучок распространяется в плоскости, параллельной плоскости основания многоходовой системы. При прохождении лазерного пучка через газовую среду происходит его рассеяние на молекулах во всех направлениях с появлением новых частотных компонент. Анализируя спектр рассеянного излучения, собранного из ограниченной области сфокусированного лазерного пучка, получают информацию о составе и температуре газа в точке измерений. Прошедшее через объект исследования лазерное излучение попадает на сборку оптических элементов 2, обеспечивающую перефокусировку пучка без изменения размера перетяжки, и возвращается в область измерений по другому пути. Сборка оптических элементов 2 содержит два поворотных зеркала 3 в юстировочной головке, обеспечивающей независимый наклон каждого в двух направлениях, и перефокусирующую линзу 4. Способная перемещаться в направлении к точке фокуса, сборка оптических элементов 2 устанавливается в положении, обеспечивающем фокусировку отраженного пучка в той же точке. При этом расстояние от точки фокусировки пучка до центра линзы 4 оказывается равным ее двойному фокусному расстоянию. Такое положение линзы, равноудаленное от сопряженных фокальных плоскостей, обеспечивает перефокусировку пучка без изменения размера перетяжки. Пучок через линзу проходит по ее оси и поэтому испытывает минимальные искажения.

Система может иметь одну и более идентичных сборок оптических элементов 2. На схеме, фиг.1, показано шесть идентичных сборок 2.

Лазерный пучок последовательно проходит все сборки оптических элементов и попадает на сборку 2', содержащую линзу 1 и плоское зеркало 5 или только вогнутое зеркало, и возвращается, проходя весь пройденный путь в обратном направлении. Количество проходов зависит от количества используемых сборок оптических элементов 2 и может равняться 4 при использовании одной сборки 2 и более. В схеме, показанной на фиг.1, число проходов равно 14. Все элементы схемы размещены на общем основании.

Использование заявляемого изобретения позволяет, применяя многократное прохождение лазерного пучка через измерительный объем, увеличить интенсивность полезного сигнала. Предлагаемая оптическая схема максимально упрощена, она не требует изготовления специальных оптических элементов и вызывает минимальные искажения лазерного пучка.

Обоснование промышленной применимости.

При испытаниях многоходовой фокусирующей системы использовано излучение импульсного Nd:YAG лазера ЛТИ-401 (г.Минск, Белоруссия) с преобразованием излучения во вторую гармонику с частотой ω0=18788 см-1 (длина волны 532 нм). Длительность импульсов излучения ~15 не, частота повторения ~10 Гц, энергия в импульсе ~30 мДж (при использовании дополнительных блоков усиления).

Оптическая схема измерений соответствовала фиг.2. Схема содержала лазер 6, многоходовую фокусирующую систему 7, возвращающее зеркало для рассеянного излучения 8, приемную оптическую систему 9, спектрограф 10, многоканальный фотоприемник 11, компьютер 12, объект исследования 13.

В тестовых измерениях применение многоходовой фокусирующей системы позволило увеличить интенсивность спектров СКР в 10 раз. Для получения спектров такой интенсивности в схеме с одним проходом лазерного излучения потребовался бы лазер с энергией в импульсе ~300 мДж. Однако излучение с такими энергетическими параметрами неизбежно вызывает оптический пробой в фокусе. Для уменьшения плотности мощности сфокусированного лазерного излучения авторы [J.Kojima and Q.-V. Nguyen Measurement and simulation of spontaneous Raman scattering in high v.15, p.565-580] применяют специальную оптическую схему (т.н. "pulse-stretcher") для расширения лазерного импульса во времени. В предлагаемой многоходовой схеме использовали импульсное лазерное излучение с плотностью мощности в фокусе немного ниже пороговой. При многократном пересечении пучков плотность мощности также не превышала критического уровня, потому что излучение попадало в измерительный объем при каждом последующем проходе с задержкой по времени. Величину задержки можно установить подбором линз 1 и 4 с требуемыми для этого фокусными расстояниями. Это еще одно полезное свойство многоходовой системы.


МНОГОХОДОВАЯ ФОКУСИРУЮЩАЯ СИСТЕМА И СПОСОБ ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ МНОГОКРАТНОЕ ПРОХОЖДЕНИЕ ЛАЗЕРНОГО ПУЧКА ЧЕРЕЗ ИЗМЕРИТЕЛЬНЫЙ ОБЪЕМ
МНОГОХОДОВАЯ ФОКУСИРУЮЩАЯ СИСТЕМА И СПОСОБ ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, ОБЕСПЕЧИВАЮЩИЙ МНОГОКРАТНОЕ ПРОХОЖДЕНИЕ ЛАЗЕРНОГО ПУЧКА ЧЕРЕЗ ИЗМЕРИТЕЛЬНЫЙ ОБЪЕМ
Источник поступления информации: Роспатент

Showing 21-30 of 95 items.
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
Showing 21-30 of 63 items.
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
+ добавить свой РИД