×
20.07.2014
216.012.dfd9

Результат интеллектуальной деятельности: ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002523091
Дата охранного документа
20.07.2014
Аннотация: Изобретение относится к точному приборостроению, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением динамических давлений. Пьезоэлектрический датчик давления содержит корпус с мембраной, в котором расположен чувствительный элемент, состоящий из пьезоэлементов, токосъемника, расположенного между пьезоэлементами, и основания. Чувствительный элемент закрыт тонкостенным стаканом, который поджат к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на мембрану статического и динамического давлений. Размеры стакана определены согласно математическому выражению: где h - высота стакана; D - внешний диаметр стакана. Дно стакана выполнено толщиной, обусловленной исключением прогиба мембраны в центральной ее части. Техническим результатом является повышение точности измерений, упрощение конструкции и улучшение эксплуатационных характеристик. 4 ил.
Основные результаты: Пьезоэлектрический датчик давления, содержащий корпус с мембраной, в котором расположен закрытый стаканом чувствительный элемент, состоящий из пьезоэлементов, токосъемника, расположенного между пьезоэлементами, и основания, отличающийся тем, что стакан выполнен тонкостенным и поджат к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на мембрану статического и динамического давлений, при этом размеры стакана определены согласно математическому выражению: ,где h - высота стакана;D - внешний диаметр стакана,а дно стакана выполнено толщиной, обусловленной исключением прогиба мембраны в центральной ее части.

Изобретение относится к точному приборостроению, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением динамических давлений.

Известна конструкция датчика давления [1], состоящего из корпуса с мембраной и основания, на котором установлен чувствительный элемент, через который проходит шток, на котором установлен съемный упор и переходная втулка.

Недостатком данной конструкции является невозможность проведения измерений в условиях воздействия высоких температур, поскольку при повышении температуры шток изменяет свои линейные размеры, в результате чего уменьшается величина поджатия чувствительного элемента, приводящая к увеличению зазоров между деталями чувствительного элемента, что приводит к снижению чувствительности и увеличению погрешности от воздействия температуры. Кроме того, при проведении измерений в условиях воздействия вибрации отрицательное влияние на чувствительный элемент будет оказывать масса штока и переходной втулки, поскольку эти детали являются инерционной массой.

Наиболее близким техническим решением (прототипом) является охлаждаемый пьезоэлектрический датчик [2], содержащий корпус, в котором расположен чувствительный элемент, состоящий из пьезоэлементов, токосъемника, расположенного между пьезоэлементами, и основания с контактной колодкой. Чувствительный элемент закрыт стаканом, с внешней стороны дна которого имеются прямоугольные пазы. Чувствительный элемент поджат к мембране корпуса гайкой. Корпус датчика имеет каналы для прохождения охлаждающей жидкости.

Недостатком этой конструкции является ограниченная возможность применения датчика из-за обязательного наличия охлаждаемой жидкости, применение которой приводит к усложнению конструкции и ухудшению эксплуатационных характеристик. Кроме того, изменение давления охлаждаемой жидкости, воздействующей на стенки защитного стакана, приводит к снижению точности измерений, что обусловлено радиальной деформацией стенок защитного стакана от воздействия давления охлаждающей жидкости.

Целью предлагаемого технического решения является повышение точности измерения в условиях воздействия высоких температур, статического давления и вибрации, кроме того, упрощение конструкции и улучшение эксплуатационных характеристик.

Поставленная цель достигается тем, что в пьезоэлектрическом датчике давления, содержащем корпус с мембраной, в котором расположен закрытый стаканом чувствительный элемент, состоящий из пьезоэлементов, токосъемника, расположенного между пьезоэлементами, и основания, согласно предлагаемому изобретению, стакан выполнен тонкостенным и поджат к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на мембрану статического и динамического давлений, при этом размеры стакана определены согласно математическому выражению:

,

где h - высота стакана;

D - внешний диаметр стакана,

а дно стакана выполнено толщиной, обусловленной исключением прогиба мембраны в центральной ее части.

Точность измерения зависит от величины зазоров между деталями чувствительного элемента, а за счет усилия поджатия, равного суммарному усилию от максимально возможного воздействия на мембрану статического и динамического давлений, величина зазоров будет минимальна, и, следовательно, изменение выходного сигнала от воздействия статического и динамического давления будет также минимально.

Оптимальное соотношение между внешним диаметром стакана и его высотой составляет:

где h - высота стакана;

D - внешний диаметр стакана.

Выбранное соотношение подтверждается произведенным расчетом осевых усилий и механических напряжений в стенках стакана и пьезоэлементах и зависит от давления измеряемой среды [3].

Осевое усилие в стенке стакана от давления измеряемой среды определяется по формуле:

где Р - давление измеряемой среды, Р=10 МПа;

D - внешний диаметр стакана, D=6 мм;

d - внутренний диаметр стакана, d=5,6 мм.

Радиальное усилие в стенке стакана от давления измеряемой среды определяется по формуле:

где h - высота стакана, h=16 мм.

Осевое напряжение в стенке стакана от воздействия давления измеряемой среды определяется по формуле:

Радиальное напряжение в стенке стакана от воздействия давления измеряемой среды определяется по формуле:

где δ - толщина стенки стакана, δ=0,2 мм.

Подставляя числовые значения параметров, получаем:

Qосс=28,57 Н, σосс=2,9 МПа,

Qрадс=3014,4 Н, σрадс=800 МПа.

Осевое и радиальное усилия, воздействующие на пьезоэлементы от давления измеряемой среды, определяем по формулам (1) и (2) при Дпэ=5 мм, dпэ=2 мм, hпэ=2 мм, δпэ=1,5 мм:

Qоспэ=164,85 Н, Qрадпэ=314 Н.

Осевое и радиальное напряжения в пьезоэлементах от давления измеряемой среды определяем по формулам (3) и (4):

σоспэ=13,125 МПа, σрадпэ=10 МПа.

Сравнивая полученные значения усилий в осевом направлении от давления измеряемой среды в стенках стакана и пьезоэлементах можно сделать вывод, что стенки стакана эффективно передают измеряемое давление на пьезоэлементы и что увеличение высоты стакана положительно влияет на передачу давления на пьезоэлементы. Но высота стакана ограничивается, во-первых, сложностью изготовления тонких оболочек механической обработкой, во-вторых, частотой собственных колебаний, поскольку датчик предназначен для измерения динамических процессов, а стенка стакана представляет собой тонкостенную цилиндрическую оболочку.

Согласно вычислениям Дж.Рэлея и А.Лява [4] по теории упругости тонкостенных цилиндрических оболочек, у которых соотношение между внешним диаметром и высотой оболочки мало, частота собственных колебаний в продольном направлении определяется по формуле:

где n - число волн, укладывающихся по окружности наружной поверхности тонкой части стакана;

Е - модуль упругости материала стакана, сталь 12Х18Н10Т;

ρ - плотность материала стакана;

h - высота тонкой части стакана.

Исходя из того, что верхняя граница частотного диапазона составляет 20000 Гц, получаем ω=38,97 кГц. Таким образом, увеличение высоты стакана ведет к снижению частоты собственных колебаний стакана, а следовательно, к снижению верхней границы частотного диапазона измерения, что нецелесообразно.

На фиг.1 представлена конструкция пьезоэлектрического датчика давления.

На фиг.2 показан усредненный график изменения величины выходного сигнала от воздействия температуры измеряемой среды.

На фиг.3 изображен стакан.

На фиг.4 изображен пьезоэлемент.

Пьезоэлектрический датчик давления содержит корпус 1 с мембраной 2, в котором расположен чувствительный элемент, состоящий из пьезоэлементов 3, токосъемника 4, расположенного между пьезоэлементами 3, и основания 5. Чувствительный элемент закрыт тонкостенным стаканом 6, который поджат к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на мембрану 2 статического и динамического давлений.

Датчик работает следующим образом.

Измеряемое давление, воздействующее на мембрану 2 датчика, передается на дно стакана 6, которое передает измеряемое давление на чувствительный элемент. Дно стакана 6 выполнено толщиной, обусловленной обеспечением эффективной площади воздействия давления на поверхность пьезоэлементов 3 путем исключения прогиба мембраны 2 в центральной ее части. Стенки стакана 6, деформируясь в радиальном направлении, передают воспринимаемое мембраной 2 давление на чувствительный элемент датчика, на электродах которого генерируется электрический заряд, пропорциональный измеряемому давлению.

При измерении динамического давления в условиях воздействия статического давления точность измерения зависит в первую очередь от наличия зазоров между деталями, из которых состоит чувствительный элемент, а за счет усилия поджатия чувствительного элемента стаканом 6, равного суммарному усилию от максимально возможного воздействия на мембрану 2 датчика статического и динамического давлений, величина зазоров будет минимальна.

При воздействии температуры измеряемой среды происходит увеличение линейных размеров деталей датчика, причем поскольку длина цилиндрической части основания 5 больше высоты стакана 6, величина поджатия чувствительного элемента не уменьшается, поэтому изменение выходного сигнала минимально и зависит в основном от изменения пьезоэлектрических свойств материала, из которого изготовлены пьезоэлементы 3.

Полученная расчетным путем величина увеличения линейных размеров от температуры основания 5 вместе с деталями чувствительного элемента составляет 318,78·10-3 мм, а стакана 6-307,85·10-3 мм. Расчет проводился для диапазона температур от 25 до 600°С. По результатам испытаний изготовленных датчиков построен усредненный график изменения величины выходного сигнала от воздействия температуры измеряемой среды и приведен на фиг.2. В качестве материала для изготовления пьезоэлементов 3 применялась пьезокерамика ТВ 3 (титанат висмута).

Величина выходного сигнала от вибрации также зависит от наличия зазоров между деталями, из которых состоит чувствительный элемент, а за счет поджатия чувствительного элемента стаканом 6 с указанным выше усилием величина зазоров будет минимальна, а следовательно, выходной сигнал от воздействия вибрации будет тоже минимален. По результатам изготовления датчиков в количестве 16 шт. виброэквивалент составляет (12÷16) Па/м·с-2((12÷16)·10-4 кгс·см-2/g).

По результатам изготовления пьезоэлектрических датчиков давления в количестве 16 шт. диапазон измерений от 0,001·105 до 1000·105 Па в частотном диапазоне от 10 до 20000 Гц, погрешность измерения составила ±(1,5÷3) %.

Предлагаемое техническое решение реализовано в интеллектуальном датчике динамических давлений ДПС 024, находящемся на этапе «Разработка рабочей документации на опытные образцы», разработанном в рамках ОКР «Диагностика» согласно Госконтракту от 02.06.2011 №783-П003/11.

Технический результат заключается в повышении точности измерения в условиях воздействия высоких температур, статического давления и вибрации, кроме того, упрощении конструкции и улучшении эксплуатационных характеристик.

Источники известности

1. А.С. SU №1716343 А1, Датчик давления. Опубл. 29.02.92. БИ. №8.

2. Проектирование датчиков для измерения механических величин. / Под ред. Е.П.Осадчего. - М.: Машиностроение. 1979 г., с.207-208.

3. Расчет на прочность деталей машин: Справочник / И.А.Биргер, Б.Ф.Шорр, Г.К.Иосилевич. - 3-е изд., перераб. и доп. - М.: Машиностроение, 1979 г., с.5-7.

4. Колебания и измерения звука круговыми цилиндрическими оболочками. / Ю.И.Белоусов, А.В.Римский-Корсаков. - ЦНИИ «Румб», 1980 г., с.8.

Пьезоэлектрический датчик давления, содержащий корпус с мембраной, в котором расположен закрытый стаканом чувствительный элемент, состоящий из пьезоэлементов, токосъемника, расположенного между пьезоэлементами, и основания, отличающийся тем, что стакан выполнен тонкостенным и поджат к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на мембрану статического и динамического давлений, при этом размеры стакана определены согласно математическому выражению: ,где h - высота стакана;D - внешний диаметр стакана,а дно стакана выполнено толщиной, обусловленной исключением прогиба мембраны в центральной ее части.
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 41-48 of 48 items.
19.04.2019
№219.017.3435

Дифференциальный взаимоиндуктивный датчик перемещений

Изобретение относится к области контрольно-измерительной техники и может быть использовано для контроля линейных перемещений, например для контроля тепловых перемещений оборудования и трубопроводов на АЭС. Технический результат: повышение надежности, уменьшение габаритов. Сущность: датчик...
Тип: Изобретение
Номер охранного документа: 0002464528
Дата охранного документа: 20.10.2012
29.04.2019
№219.017.40c7

Тонкопленочный датчик давления

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия повышенных виброускорений и широкого диапазона температур. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002397462
Дата охранного документа: 20.08.2010
29.04.2019
№219.017.44ac

Формирователь импульсов из сигналов индукционных датчиков частоты вращения

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики, вырабатывающие двухполярные сигналы, в частности индукционные датчики частоты вращения и расхода. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002459351
Дата охранного документа: 20.08.2012
29.04.2019
№219.017.45a8

Резонансный преобразователь давления

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений. Техническим результатом является повышение чувствительности преобразователя. Резонансный...
Тип: Изобретение
Номер охранного документа: 0002431815
Дата охранного документа: 20.10.2011
29.04.2019
№219.017.46a0

Датчик давления

Изобретение относится к измерительной технике. Сущность: датчик давления содержит корпус, мембрану (1) радиуса r, выполненную с жестким центром (2) радиуса r и утолщенным периферийным основанием (3). На мембране сформированы тензорезисторы (R1-R8), выполненные в виде соединенных низкоомными...
Тип: Изобретение
Номер охранного документа: 0002464538
Дата охранного документа: 20.10.2012
29.06.2019
№219.017.9c89

Тонкопленочный датчик давления

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия нестационарных температур и повышенных виброускорений. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002399030
Дата охранного документа: 10.09.2010
29.06.2019
№219.017.9fb9

Формирователь импульсов из сигналов индукционных датчиков частоты вращения

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты. Технический результат заключается в повышении надежности путем обеспечения диагностики входных цепей на наличие короткого замыкания и разрыва, повышения...
Тип: Изобретение
Номер охранного документа: 0002458459
Дата охранного документа: 10.08.2012
29.06.2019
№219.017.a1a4

Полупроводниковый преобразователь давления

Изобретение относится к области измерительной техники, в частности к преобразователям малых давлений высокотемпературных сред, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей давления, работоспособных при повышенных температурах. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002464539
Дата охранного документа: 20.10.2012
Showing 31-37 of 37 items.
20.11.2015
№216.013.914c

Способ изготовления тонкопленочных резисторов

Изобретение относится к области электронной техники, а именно к средствам измерения, в конструкции которых применен тензорезистивный элемент на металлической подложке, изготовленный с использованием тонкопленочной технологии. Способ изготовления тонкопленочных резисторов включает...
Тип: Изобретение
Номер охранного документа: 0002568812
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91d4

Устройство измерения динамического давления

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления. Устройство измерения динамического давления содержит...
Тип: Изобретение
Номер охранного документа: 0002568948
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.939e

Камертонный измерительный преобразователь механических напряжений и деформаций

Изобретение относится к области измерительной техники и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей силы, механических напряжений и деформаций, работоспособных при повышенных и пониженных температурах. Кремниевый камертонный...
Тип: Изобретение
Номер охранного документа: 0002569409
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9b8f

Микромеханический волоконно-оптический датчик давления

Изобретение относится к измерительной технике. Микромеханический волоконно-оптический датчик давления выполнен на основе оптического волокна, содержащего участки ввода и вывода излучения, а также участок, размещенный в пропускном канале корпуса. При этом пропускной канал включает участок для...
Тип: Изобретение
Номер охранного документа: 0002571448
Дата охранного документа: 20.12.2015
27.12.2016
№216.013.9de5

Способ изготовления интегрального микромеханического реле

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе. Технический результат: повышение надежности и временной стабильности интегрального...
Тип: Изобретение
Номер охранного документа: 0002572051
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9ecb

Способ изготовления глубокопрофилированных кремниевых структур

Изобретение относится к приборостроению и может применяться при изготовлении кремниевых микромеханических датчиков, таких как датчики давления и акселерометры. Сущность изобретения: в способе изготовления глубокопрофилированных кремниевых структур на кремниевой пластине создают защитный слой,...
Тип: Изобретение
Номер охранного документа: 0002572288
Дата охранного документа: 10.01.2016
29.04.2019
№219.017.46a0

Датчик давления

Изобретение относится к измерительной технике. Сущность: датчик давления содержит корпус, мембрану (1) радиуса r, выполненную с жестким центром (2) радиуса r и утолщенным периферийным основанием (3). На мембране сформированы тензорезисторы (R1-R8), выполненные в виде соединенных низкоомными...
Тип: Изобретение
Номер охранного документа: 0002464538
Дата охранного документа: 20.10.2012
+ добавить свой РИД