×
10.07.2014
216.012.daa0

Результат интеллектуальной деятельности: ПЕРЕДАТЧИК ПАРАМЕТРОВ ПРОЦЕССА С ОПРЕДЕЛЕНИЕМ ПОЛЯРНОСТИ ТЕРМОПАРЫ

Вид РИД

Изобретение

№ охранного документа
0002521746
Дата охранного документа
10.07.2014
Аннотация: Группа изобретений относится к передатчикам параметров процесса, используемым в системах управления технологическими процессами и мониторинга. Передатчик (10) параметров процесса для измерения температуры производственного процесса включает в себя первый электрический соединитель (1), сконфигурированный с возможностью соединения с первым проводом термопары, при этом первый электрический соединитель (1) включает в себя первый электрод (1A) и второй электрод (1B). Первый и второй электроды сконфигурированы с возможностью электрического соединения с первым проводом (18B) термопары. Второй электрический соединитель (2) сконфигурирован с возможностью соединения со вторым проводом (18A) термопары, при этом второй электрический соединитель (2) включает в себя третий электрод (2A) и четвертый электрод (2B). Третий и четвертый электроды сконфигурированы с возможностью электрического соединения со вторым проводом (18A) термопары. Второй провод выполнен из материала, отличного от материала первого провода. С первым и вторым электрическими соединителями соединена измерительная схема (28), сконфигурированная с возможностью выдачи выходного сигнала, связанного с температурой термопары. Измерительная схема дополнительно сконфигурирована с возможностью определения полярности термопары на основе, по меньшей мере, одного измерения, выполненного, по меньшей мере, между двумя электродами из числа первого, второго, третьего и четвертого электродов. Технический результат заключается в возможности определения полярности термопары. 2 н. и 19 з.п. ф-лы, 5 ил.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к передатчикам параметров процесса, используемым в системах управления технологическими процессами и мониторинга. Конкретнее, настоящее изобретение относится к передатчикам параметров процесса, измеряющим температуру производственной технологической текучей среды с использованием термопары.

Передатчики для управления технологическими процессами используются для измерения технологических параметров в системе управления технологическими процессами или мониторинга. Обычно передатчик включает в себя некоторый датчик параметров процесса, имеющий выходной сигнал, оцифрованный с помощью аналого-цифрового преобразователя и подаваемый на микропроцессор. Одним из типов датчика параметров процесса является температурный датчик, используемый для определения температуры технологической текучей среды. Измеренная температура может использоваться непосредственно либо может использоваться для компенсации другого технологического параметра, такого как поток. Параметр процесса передается из удаленного местоположения в локальное местоположение по контуру управления процессом. Контур управления процессом может содержать, например, двухпроводной контур управления процессом или иную конфигурацию, в том числе беспроводную конфигурацию.

Одним из типов температурного датчика является термопара, образованная, когда два металла различных видов приводятся в соприкосновение. Между этими двумя металлами создается напряжение, связанное с температурой спая. Это напряжение может быть измерено, а также, если это требуется, оцифровано с помощью схемы в передатчике. Термопара имеет два провода, выполненные с возможностью присоединения к первому и второму электрическим соединителям передатчика. Однако для получения точных замеров температуры требуется знать ориентационное положение (т.е. полярность) термопары относительно первого и второго электрических соединителей.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Передатчик параметров процесса для измерения температуры производственного процесса включает в себя первый электрический соединитель, выполненный с возможностью соединения с первым проводом термопары, при этом первый электрический соединитель включает в себя первый электрод и второй электрод. Первый и второй электроды изготовлены из различных материалов и сконфигурированы с возможностью электрического соединения с первым проводом термопары. Второй электрический соединитель сконфигурирован с возможностью соединения со вторым проводом термопары, при этом второй электрический соединитель включает в себя третий электрод и четвертый электрод. Третий и четвертый электроды изготовлены из различных материалов и сконфигурированы с возможностью электрического соединения со вторым проводом термопары. Второй провод выполнен из материала, отличного от материала первого провода. С первым и вторым электрическими соединителями соединена измерительная схема, сконфигурированная с возможностью выдачи выходного сигнала, связанного с температурой термопары. Измерительная схема дополнительно сконфигурирована с возможностью определения полярности термопары на основе, по меньшей мере, одного измерения, выполненного, по меньшей мере, между двумя электродами из числа первого, второго, третьего и четвертого электродов.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фигуре 1 показана упрощенная схема системы управления производственным процессом, включающая в себя температурный датчик на основе термопары, сконфигурированный с возможностью измерения температуры технологической текучей среды.

На Фигуре 2 показана упрощенная схема передатчика температуры, соединенного с температурным датчиком на основе термопары.

На Фигуре 3 показан общий вид электрического соединения между термопарой и электрическими соединителями передатчика.

На Фигуре 4 показана схема электрического соединения с термопарой.

На Фигуре 5 показан график зависимости единиц счета (напряжения) от выборки (времени) для термопары, соединенной с электрическими соединителями по настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЛЛЮСТРАТИВНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

На Фигуре 1 показана упрощенная схема системы 5 управления производственным процессом. На Фигуре 1 показан технологический трубопровод 7, по которому поступает технологическая текучая среда. Передатчик 10 параметров процесса сконфигурирован с возможностью присоединения к технологическому трубопроводу 7. Передатчик 10 включает в себя датчик 18 параметров процесса, который может содержать, например, термопару, при этом передатчик 10 сконфигурирован с возможностью передачи информации в удаленное местоположение, например на пост 6 управления технологическим процессом. Передача может выполняться по контуру управления процессом, такому как двухпроводной контур 11 управления процессом. Контур управления процессом может соответствовать любому требуемому формату, в том числе, например, представлять собой контур управления процессом с токовым сигналом 4-20 мА, контур управления процессом для передачи цифровой информации, беспроводной контур управления процессом и т.д. В примере, показанном на Фигуре 1, контур 11 управления процессом запитывается от источника 6A питания на посту 6 управления. Эта энергия используется для обеспечения энергией передатчика 10 параметров процесса. Для измерения силы тока, протекающего через контур 11, может использоваться измерительный резистор 6B.

Настоящее изобретение направлено на создание передатчика параметров процесса, сконфигурированного с возможностью определения ориентационного положения (т.е. полярности) температурного датчика, соединенного с устройством. На Фигуре 2 показана упрощенная схема одного варианта осуществления изобретения, в котором передатчик 10 параметров процесса соединен с контуром 11 управления процессом. Передатчик 10 включает в себя клеммный блок 14, сконфигурированный с возможностью соединения с термопарой 18. Клеммный блок 14 на этой Фигуре включает в себя четыре клеммы, а именно электрические соединители 1, 2, 3 и 4. Для термопары требуется только два электрических соединителя. Передатчик 10 параметров процесса включает в себя мультиплексор 20, сконфигурированный с возможностью подачи данных в аналого-цифровой преобразователь, который выполняет оцифровывание и подачу данных в микропроцессор 22 для их обработки и/или передачи по контуру 11 управления процессом, используя схему 24 ввода/вывода. В данном примере схема 24 ввода/вывода также сконфигурирована с возможностью обеспечения подачи энергии на передатчик 10 параметров процесса, используя энергию, принятую по двухпроводному контуру 11 управления процессом. При беспроводной конфигурации в качестве источника питания может использоваться аккумуляторная батарея. Мультиплексор 20 управляется микропроцессором 22 для осуществления выбора между различными вводами с клеммного блока 14. Как будет подробнее показано ниже, между клеммами 1 и 2 и мультиплексором 20 имеется два электрических соединения. С мультиплексором 20 соединен дифференциальный усилитель 26, сконфигурированный с возможностью подачи выходного напряжения на аналого-цифровой преобразователь 28. Выходное напряжение связано с напряжением между любыми двумя вводами, соединенными с мультиплексором 20, выбранными микропроцессором 22. Микропроцессор 22 работает согласно инструкциям, сохраненным в запоминающем устройстве 30, со скоростью, определяемой тактовым генератором 32. Например, микропроцессор 22 может использовать напряжение, подаваемое аналого-цифровым преобразователем 28, для получения информации, связанной с температурой, от термопары 18.

В процессе работы температура термопары 18 создает напряжение VTCINPUT на клеммах (электрических соединителях) 1 и 2. С мультиплексором 20 также соединен источник опорного напряжения VTCREF. Передатчик 10 замеряет температуру термопарного датчика 18 путем определения напряжения VTC на термопаре согласно следующему уравнению:

VTC=(VTCINPUT/VTCREF)(VTCREFNOM) (1)

Как будет подробнее показано ниже, электрические соединительные клеммы 1 и 2 клеммного блока 14 сконфигурированы с возможностью включать в себя два соединения, каждая для использования при определении ориентационного положения (полярности) термопары 18. Каждое соединение 1, 2 включает в себя два электрода, выполненных из неодинаковых материалов. Неодинаковые материалы изолированы друг от друга, пока провода от термопары 18 не введены в соединитель. Провода от термопары 18 перекрывают зазор между двумя неодинаковыми металлами, создавая тем самым термопару на холодном спае технологических датчиков в каждой точке присоединения к передатчику 10. Термопары с холодным спаем имеют различные характеристики напряжения, зависящие от типа датчика и двух металлов, используемых для соединения. Эти напряжения могут характеризоваться посредством температурных функций холодных спаев для обеспечения определения полярности. Данный способ предусматривает изменения в технологическом процессе без проведения индикации полярности.

Микропроцессор может быть сконфигурирован с возможностью выдачи оператору предупредительного сигнала при обнаружении обратной полярности, либо изменить уравнение для расчета температуры с учетом обратной полярности.

Различные типы термопар идентифицируются по цветовой маркировке проводов. Четыре наиболее распространенных типа термопар - это типы E, J, K и T. Если вторичные материалы клемм 1 и 2 содержат хромель на положительной стороне и константан на отрицательной стороне, такая конфигурация соответствует термопаре типа E. Хромель - зарегистрированная торговая марка компании Hoskins manufacturing Company. Константан - медно-никелевый сплав, обычно содержащий 55% меди и 45% никеля. Если термопара типа E соединена правильно, напряжение на холодном спае термопары благодаря двум электрическим соединениям между термопарой и клеммами 1 и 2 будет равно нулю. С другой стороны, если соединение изменено на обратное, оба холодных спая создадут поддающееся измерению напряжение благодаря малому температурному градиенту. Хромель, представляющий собой сплав, содержащий примерно 90 процентов никеля и 10 процентов хрома, используется для изготовления положительных проводников термопар типа E по стандарту ANSI (хромель-константан) и типа K (хромель-алюмель). Они могут эксплуатироваться при температурах до 1100°C в окислительных средах.

На Фигуре 3 показан общий вид, на котором термопара 18 присоединена к электрическим соединителям 1 и 2. Термопара 18 образована проводами 18A и 18B, выполненными из двух неодинаковых металлов, соприкасающимися в точке 18C спая. Провод 18B соединяется с электрическим соединителем 1. Электрический соединитель 1 образован первичным электродом 1A и вторичным электродом 1B. Точно так же, провод 18A соединяется с электрическим соединителем 2, образованным первичным электродом 2A и вторичным электродом 2B. Обычно электроды 1A и 2A («первичные» электроды) могут изготавливаться из стандартных металлов, таких как никелированная латунь. Вторичные электроды 1B и 2B могут выполняться из материала, пригодного для использования в термопаре, такого как хромель или константан. В термопарах других типов, таких как тип J и тип T, в качестве одного из материалов для их проводов также используется константан, в то время как в типе K используется хромель. Будучи соединенными с правильной полярностью, два холодных спая, образованных электродами 1B и 2B соответственно с проводами 18B и 18A, создадут электрическое напряжение, равное нулю. Однако если полярность изменить на обратную, будет присутствовать малое электрическое напряжение. Полярность термопар других типов может быть также определена путем получения характеристик напряжения, образованного на вторичных холодных спаях в некотором диапазоне температурных градиентов. Например, одна сторона будет более чувствительной к малым температурным градиентам, чем другая сторона.

Это также позволяет системе проверить тип сконфигурированного датчика на соответствие эффектам холодного спая присоединенного датчика. Если характеристики датчика не соответствуют сконфигурированному датчику, конфигурация или установка могут быть некорректными.

На Фигуре 4 показана упрощенная схема термопары 18, соединенной с аналого-цифровым преобразователем 28. В этом примере мультиплексор 20 и усилитель 26 для простоты не показаны. Спаи, образованные между вторичными соединениями 1B и 2B и проводами 18B и 18A, представлены в виде спаев 1C и 2C соответственно. На Фигуре 4 также показан датчик 100 температуры холодного спая, который может содержать, например, резистивный датчик температуры, имеющий электрическое сопротивление, изменяемое с температурой. Температурный датчик 100 используется для измерения температуры клеммного блока 14, показанного на Фигуре 2, в качестве средства для обеспечения компенсации холодного спая при обычных измерениях с использованием термопар.

На Фигуре 5 показан график зависимости «единиц счета» от «выборки», представляющий зависимость напряжения от времени для термопары типа E. Как говорилось выше, термопара типа E содержит спай, образованный хромелем и константаном. В данном примере показано напряжение между проводами термопары и вторичными электродами. Линия, отмеченная позицией 102, соответствует отрицательной стороне термопары, в которой вторичный электрод содержит хромель. Аналогичным образом линия 104 соответствует напряжению в месте спая другого вторичного электрода и другого провода термопары, т.е. в месте спая хромеля и константана. В момент времени T1 на холодный спай направлен вентилятор. На Фигуре 5 показано, что если два материала являются одинаковыми, измеренное напряжение примерно равно нулю. Однако если они различны, присутствует поддающееся измерению напряжение, имеющее незначительные флуктуации при изменении температуры. В данном примере изменение температуры, вызванное применением вентилятора, не требуется для определения полярности термопары. Для определения полярности могут использоваться стандартные статистические модели, например среднеквадратическое отклонение.

Приведенные выше технологии могут использоваться для определения полярности термопары, соединенной с передатчиком. Может быть предусмотрен сигнал оповещения оператора о том, что полярность изменена на обратную, или, в другом примере, алгоритмы программного обеспечения, выполняемые микропроцессором 22, могут работать иначе в отношении термопары с обратной полярностью. Данная технология может также использоваться для компенсации градиентов температуры холодного спая. Как показано на Фигуре 4, может быть обеспечен температурный датчик 100, используемый для измерения температуры холодного спая на клеммном блоке, а также используемый для коррекции ошибок, возникающих в замерах напряжения. Предпочтительно расположить такой температурный датчик как можно ближе к клеммам 1, 2. Однако в большинстве случаев датчик температуры холодного спая должен располагаться на некотором расстоянии от клемм, что снижает точность замеров температуры, а значит, компенсации температуры холодного спая. Кроме того, резистивные датчики температуры обычно уступают термопарам по времени реакции на изменения температуры. Однако с применением технологий по настоящему изобретению изменение температуры может измеряться с использованием тестового соединителя холодного спая и использоваться для внесения поправок в измеренную температуру холодного спая термопары 18.

Хотя настоящее изобретение описано со ссылкой на предпочтительные варианты осуществления, специалисты в данной области техники поймут, что могут быть внесены изменения по форме и содержанию без отхода от сущности и объема изобретения. Как показано, электроды могут быть разнесены или иначе электрически изолированы друг от друга. В число примеров материалов термопар входят: хромель-алюмель, тип K; железо-константан, тип J; медь-константан, тип T; хромель-константан, тип E.


ПЕРЕДАТЧИК ПАРАМЕТРОВ ПРОЦЕССА С ОПРЕДЕЛЕНИЕМ ПОЛЯРНОСТИ ТЕРМОПАРЫ
ПЕРЕДАТЧИК ПАРАМЕТРОВ ПРОЦЕССА С ОПРЕДЕЛЕНИЕМ ПОЛЯРНОСТИ ТЕРМОПАРЫ
ПЕРЕДАТЧИК ПАРАМЕТРОВ ПРОЦЕССА С ОПРЕДЕЛЕНИЕМ ПОЛЯРНОСТИ ТЕРМОПАРЫ
ПЕРЕДАТЧИК ПАРАМЕТРОВ ПРОЦЕССА С ОПРЕДЕЛЕНИЕМ ПОЛЯРНОСТИ ТЕРМОПАРЫ
ПЕРЕДАТЧИК ПАРАМЕТРОВ ПРОЦЕССА С ОПРЕДЕЛЕНИЕМ ПОЛЯРНОСТИ ТЕРМОПАРЫ
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
10.03.2015
№216.013.2fbd

Измерение температуры технологической текучей среды

Изобретение относится к системам управления и контроля производственных процессов и может быть использовано для измерения температуры технологической текучей среды. Устройство (12) для измерения температуры технологической текучей среды включает в себя основанный на сопротивлении датчик 32...
Тип: Изобретение
Номер охранного документа: 0002543689
Дата охранного документа: 10.03.2015
20.11.2015
№216.013.8f57

Динамически регулируемое ац разрешение

Группа изобретений относится к области аналого-цифрового преобразования и может быть использована в системах управления и контроля. Техническим результатом является обеспечение динамически изменяемого разрешения преобразования. Передатчик переменной процесса используется для измерения...
Тип: Изобретение
Номер охранного документа: 0002568311
Дата охранного документа: 20.11.2015
10.03.2016
№216.014.bedb

Обнаружение ухудшения характеристик датчика, реализованное в передатчике

Изобретение относится к передатчикам переменных параметров процесса, используемым в системах мониторинга и управления процессом. Технический результат - повышение быстродействия передатчика. Передатчик (10) переменных параметров процесса включает в себя память (16), которая хранит...
Тип: Изобретение
Номер охранного документа: 0002576588
Дата охранного документа: 10.03.2016
20.02.2016
№216.014.cd83

Диагностика тока двухпроводного контура управления процессом

Группа изобретений относится к передатчику параметра процесса. Технический результат - обеспечение точного способа обнаружения ошибок в диапазоне. Для этого предложен передатчик параметра процесса, содержащий: процессор, цифро-аналоговый (D/A) преобразователь, компонент управления контура,...
Тип: Изобретение
Номер охранного документа: 0002575693
Дата охранного документа: 20.02.2016
25.08.2017
№217.015.99aa

Диагностика шума измерения параметра процесса

Группа изобретений относится к передатчикам параметра процесса. Технический результат – повышение точности измерения параметра процесса. Для этого передатчик параметра процесса включает в себя аналого-цифровой преобразователь (АЦП), который принимает сигнал датчика, предоставляемый датчиком,...
Тип: Изобретение
Номер охранного документа: 0002609758
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.c26c

Передатчик температуры процесса с улучшенной диагностикой датчика

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов. Передатчик (12) температуры...
Тип: Изобретение
Номер охранного документа: 0002617885
Дата охранного документа: 28.04.2017
Showing 1-10 of 66 items.
10.01.2013
№216.012.19dd

Адаптер беспроводной связи для полевых устройств

Адаптер относится к использованию в промышленных установках систем управления для контроля и управления материальными запасами промышленных и химических процессов и т.п. Заявленный беспроводной технологический адаптер связи содержит кожух, имеющий множество отверстий; заглушку, присоединенную...
Тип: Изобретение
Номер охранного документа: 0002472113
Дата охранного документа: 10.01.2013
20.08.2013
№216.012.6184

Измерительный преобразователь технологического параметра с диагностикой двухпроводного контура управления процессом

Изобретение относится к области АСУ ТП. Способ диагностики в двухпроводном измерительном преобразователе технологического параметра производственного процесса, содержащий этапы, на которых измеряют технологический параметр текучей среды процесса производственного процесса; обеспечивают выходной...
Тип: Изобретение
Номер охранного документа: 0002490596
Дата охранного документа: 20.08.2013
10.04.2014
№216.012.b359

Способ и устройство для измерения давления с использованием наполнительной трубы

Настоящая группа изобретений относится к измерению давлений в производственных процессах. Точнее говоря, относится к измерению давления с помощью наполнительной трубы. Заявленная группа изобретений включает датчик давления, а также способ для измерения давлений в производственном процессе. При...
Тип: Изобретение
Номер охранного документа: 0002511629
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.bfd5

Прибор для ядерной энергетической установки

Изобретение относится к средствам контроля ядерных энергетических установок. Прибор (100) включает модуль (110) датчика, соединенный с рабочими фланцами (104, 106). Модуль (110) датчика включает в себя опорный трубопровод (120) с резьбами (122) опорного трубопровода. Электронная схема (126)...
Тип: Изобретение
Номер охранного документа: 0002514858
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.e27d

Передатчик технологического параметра с дисплеем

Предложенная группа изобретений относится к передатчикам для управления промышленными процессами. Передатчик технологического параметра для использования при измерении технологического параметра промышленного процесса включает в себя дисплей, корпус, датчик технологического параметра,...
Тип: Изобретение
Номер охранного документа: 0002523767
Дата охранного документа: 20.07.2014
10.10.2014
№216.012.fbfa

Двухпроводное полевое устройство для промышленного процесса, обеспечивающее максимизацию мощности, доступной для схемы устройства при минимальном токе контура управления

Группа изобретений относится к технологическим полевым устройствам. Технический результат заключается в увеличении мощности, доступной для схем технологического полевого устройства. Для этого предложено технологическое полевое устройство для использования при мониторинге или управлении...
Тип: Изобретение
Номер охранного документа: 0002530352
Дата охранного документа: 10.10.2014
20.10.2014
№216.013.001e

Способ и устройство для измерения технологического параметра текучей среды в скважине

Изобретение относится к области измерения технологических параметров в скважине и может быть использовано для передачи информации с забоя скважины на поверхность посредством акустической связи. Техническим результатом является обеспечение измерения в режиме реального времени свойств скважинной...
Тип: Изобретение
Номер охранного документа: 0002531422
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.01c3

Передатчик дифференциального давления с комплементарными сдвоенными датчиками абсолютного давления

Изобретение относится к измерительной технике и может быть использовано для измерения давления рабочих жидкостей. Техническим результатом изобретения является повышение точности измерений потока. Передатчик параметра процесса для измерения давления рабочей жидкости включает в себя рабочее...
Тип: Изобретение
Номер охранного документа: 0002531849
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0a30

Блок питания и беспроводной связи для технологических полевых устройств

Изобретение относится к системам управления технологическим процессом. Система связи содержит беспроводной блок питания и связи (100, 200, 300, 350, 360, 400), сконфигурированный с возможностью подключения к полевому устройству (14) и для обеспечения рабочего питания и проводной цифровой...
Тип: Изобретение
Номер охранного документа: 0002534016
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.1b17

Датчик дифференциального давления с измерением давления в линии

Изобретение относится к датчикам давления, используемым для измерения технологической текучей среды и дифференциального давления. Техническим результатом изобретения является повышение точности измерений давления. Сборный узел датчика давления для измерения давления технологической текучей...
Тип: Изобретение
Номер охранного документа: 0002538363
Дата охранного документа: 10.01.2015
+ добавить свой РИД