×
20.06.2014
216.012.d47c

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ВОЗМОЖНОСТИ НАСТУПЛЕНИЯ КАТАСТРОФИЧЕСКИХ ЯВЛЕНИЙ

Вид РИД

Изобретение

№ охранного документа
0002520167
Дата охранного документа
20.06.2014
Аннотация: Изобретение относится к области интерферометрических исследований поверхности Земли и может быть использовано для обнаружения возможности наступления катастрофических явлений. Сущность: проводят межвитковую дифференциальную интерферометрию поверхности Земли, получая пары комплексных радиолокационных изображений (КРЛИ). Пары КРЛИ, образующие интерференционную пару, получают на витках, разделенных по времени. Кроме того, запись пары КРЛИ производят в соответствии с фазами приливных воздействий Луны и Солнца. Сравнивают полученные дифференциальные интерферометрические картины с эталонными интерферометрическими картинами. При обнаружении значительных отличий между этими картинами рассчитывают параметры напряженно-деформированного состояния земной коры и оценивают опасность ее повреждений. Технический результат: повышение точности обнаружения возможных катастрофических явлений.
Основные результаты: Способ обнаружения возможности наступления катастрофических явлений, основанный на проведении дифференциальной интерферометрии поверхности Земли, при которой применяется межвитковая интерферометрия по паре КРЛИ (комплексных радиолокационных изображений), полученных на витках, разделенных по времени и образующих интерференционную пару, отличающийся тем, что запись пары КРЛИ производится в соответствии с фазами приливных воздействий Луны и Солнца, а также проводится сравнение дифференциальных картин с эталонными интерферометрическими картинами и при обнаружении значительных отличий этих картин производится расчет параметров НДС (напряженно-деформированного состояния) земной коры и оценка опасности ее повреждений.

Изобретение относится к области исследования физических явлений, происходящих в земной коре и на ее поверхности, и может быть использовано для оценки возможности наступления неблагоприятных, и в том числе, катастрофических, природных и техногенных явлений.

Известен способ радиоволнового прогноза землетрясений (Патент РФ №2037162. Способ радиоволнового прогноза землетрясений и устройство для его осуществления / А.П.Реутов, Е.Д.Лимарев, В.Ф.Маренко и др). Сверхдлинные радиоволны (СДВ) имеют волноводный характер распространения, где нижней «стенкой» сферического волновода является поверхность Земли, а верхней - нижняя область ионосферы, высота которой колеблется от 60 км днем до 100 км ночью. Эта высота сравнима с длиной волны, чем и обусловлен волноводный характер распространения радиоволн СДВ-диапазона. Появление неоднородностей в любой из стенок волновода приводит, в частности, к изменению фазовой скорости и затуханию СДВ радиоволн. Таким образом, над большей частью земной поверхности создано многослойное электромагнитное поле, способное непрерывно контролировать сейсмоопасные регионы. Размещение в районе этих регионов определенного числа приемных пунктов позволит контролировать сигналы от различных станций, перекрыв сейсмоопасные регионы сетью пересекающихся трасс. Эти пункты могут быть как стационарные, так и мобильные (корабли, вертолеты, автомобили), развертываемые по первому сигналу «тревоги». Все пункты должны быть связаны между собой и центрами сбора и обработки информации соответствующими телекоммуникационными каналами. Земля, как большая связанная система, должна контролироваться одновременно во многих точках. Это позволит выявить возможные корреляционные связи между отдельными сейсмоопасными регионами в рамках представлений глобальной тектоники, а также обнаружить техногенные опасности.

Важным является объединение наземного сегмента с космическим. Космический томографический сегмент состоит из ныне действующих и в незначительном числе дополняемых искусственных спутников Земли (ИЗС) и наземных приемно-измерительных комплексов приема сигналов спутников, в которых отображается информация о назревающей сложной обстановке по изменению концентрации электронов в ионосфере по высоте. Таким образом, формируется томографическая система контроля за ионосферой и атмосферой вокруг Земли (1. Воинов В.В., Гуфельд И.Л., Маренко В.Ф. и др. Эффекты в ионосфере перед Спитакским землетрясением 7 декабря 1988 г. Изв. АН Сер. Физика Земли, 1992, №3; 2. Куницин В.Е., Терещенко Е.Д. Томография ионосферы. - М.: Наука, 1991). На пути к Земле ультракороткие волны, излучаемые установленными на ИЗС передатчиками, пронизывают ионосферу и атмосферу и реагируют на изменение концентрации электронов в ионосфере в период возможной угрозы.

Известен также способ построения цифровых карт рельефа (ЦКР), в котором применяется интерферометрия поперек линии пути КА, реализуемая в однопроходном режиме с использованием тандема космических РСА, либо межвитковая интерферометрия по паре комплексных радиолокационных изображений (КРЛИ), полученных на витках, разделенных по времени и образующих интерференционную пару. Разрешающая способность ЦКР зависит от размера интерференционной базы и отношения сигнал/шум для наблюдаемой поверхности. Точность измерения высоты рельефа зависит от точности знания пространственного положения интерферометрической базы. Аналогичным методом обрабатываются полученные в разное время КРЛИ заданных районов с целью выявления изменений окружающей обстановки (дифференциальная интерферометрия). Использование интерферометрической обработки позволяет обнаруживать малые смещения поверхностей и объектов или деформации поверхностного слоя Земли. Методы дифференциальной интерферометрии позволяют решать следующие задачи:

1) обнаружение изменений в оперативной обстановке в районах наблюдения, сопровождающиеся появлением и исчезновением объектов;

2) обнаружение следов, оставленных пребыванием посторонних объектов на наблюдаемой территории;

3) выявление малых изменений геометрии подстилающей поверхности и объектов (зданий, инженерных сооружений).

Особую актуальность имеет использование космических радиолокаторов с синтезированной апертурой антенны (РСА) для обследования больших площадей с целью обнаружения термокарстовых подвижек грунтов на нарушенных землях в зоне вечной мерзлоты и просадок грунта в местах интенсивной добычи углеводородов, шахтной добычи полезных ископаемых, представляющих потенциальную опасность для трубопроводов, дорог, жилых и промышленных объектов (В.С.Верба, Л.Б.Неронский, И.Г.Осипов, В.Э.Турук. Радиолокационные системы землеобзора космического базирования. М.: Радиотехника, 2010, - 676 с.).

С другой стороны, пара Земля-Луна, связанная гравитационным притяжением, совместно вращается вокруг общего центра тяжести, расположенного примерно в 4800 км от центра Земли, так как масса Земли превосходит массу Луны. В этой вращающейся системе, рассматриваемой в целом, полная центробежная сила в точности уравновешивает центростремительные силы. Из-за того что одна сторона Земли ближе к Луне, чем другая, лунное гравитационное притяжение оказывается на ближней стороне на 7% больше, чем на дальней. Это приводит к хорошо известному явлению приливов и отливов в океанах, слабым приливным явлениям в атмосфере и даже вызывает приливные колебания твердой земной коры с амплитудой около 10 см. Из-за того что Земля испытывает суточное вращение в поле этих сил, а Луна движется вокруг нее, приливные вздутия стремятся двигаться в соответствии с положением Луны. Поэтому в каждом данном районе океана каждые 24 часа 50 минут дважды происходит прилив и дважды - отлив. Ежесуточное отставание на 50 минут обусловлено опережающим движением Луны по ее орбите вокруг Земли, которая, непрерывно вращаясь, вынуждена догонять Луну. Солнце также вызывает на Земле приливы, хотя и втрое меньшей высоты, и они накладываются на приливы, вызванные притяжением Луны, меняя их характеристики. Несмотря на то что Солнце, Земля и Луна лежат почти в одной и той же плоскости, они непрерывно меняют свое положение относительно друг друга, и соответственно изменяется их приливное воздействие. Дважды на протяжении лунного месяца - в новолуние и полнолуние - Земля, Луна и Солнце оказываются на одной линии. В это время приливные силы Луны и Солнца складываются, и возникают необычно высокие («сизигийные») приливы. В первой и третьей четвертях Луны, когда приливные силы Солнца и Луны направлены под прямым углом друг к другу, они оказывают противоположное воздействие, и высота лунных приливов оказывается ниже приблизительно на одну треть («квадратурные приливы»). Другие различия в высоте приливов связаны с выявленными перемещениями Луны по небесному меридиану в течение года, с влиянием широты, с размерами и формой океанического бассейна, а также с конфигурацией заливов, эстуариев и другими особенностями берегов. Поэтому на мореограммах можно увидеть записи сложной последовательности изменений уровня воды (А.Аллисон, Д.Палмер. Геология. Наука о вечно меняющейся Земле. Пер. с англ. М.: «Мир», 1984, - 568 с.).

Известен также способ определения напряжений перед трещинами в элементах конструкций, залючающийся в том, что освещают поверхность когерентным излучением до полной величины нагрузки, поэтапно одновременно нагружают элемент, записывают на каждом из этапов двухэкспозиционные голограммы во встречных пучках для поверхности элемента в зоне вершины трещины и регистрируют интерференционные картины, по параметрам которых рассчитывают напряжение перед трещиной (V.I.Shabunevich Local stress state definition of structural elements using holographic interferometry. / Nondestr. Test. Eval., 1995, vol. 12, pp.211-218).

Наиболее близким к предлагаемому изобретению (прототипом) является способ обнаружения возможности наступления катастрофических явлений, включающий измерение параметра геофизического поля в контролируемом районе и суждение по полученным данным о возможности наступления катастрофических явлений, отличающийся тем, что измерения проводят непрерывно, выявляют колебания измеряемого параметра и при обнаружении синусоидальных колебаний возрастающей частоты, имеющих амплитуду, статистически достоверно отличающуюся от фоновой для контролируемого района, и период от 100 до 1000000 секунд, судят о наличии возможности наступления катастрофических явлений (Азроянц Э.А.; Харитонов А.С.; Яницкий И.Н. Способ обнаружения возможности наступления катастрофических явлений. Патент РФ №2030769, 1995).

Недостатками прототипа являются необходимость проведения непрерывных измерений неопределенного числа параметров различных геофизических полей и невысокая точность прогноза.

Предложенный способ является дискретным и позволяет достичь более высокую точность прогноза.

Решение поставленной задачи достигается тем, что в предлагаемом способе обнаружения возможности наступления катастрофических явлений, основанном на проведении дифференциальной интерферометрии поверхности Земли, при которой применяется интерферометрия поперек линии пути космического аппарата (КА), реализуемая в однопроходном режиме с использованием тандема космических РСА радиолокаторов с синтезированной апертурой антенны (РСА), либо межвитковая интерферометрия по паре комплексных радиолокационных изображений (КРЛИ), полученных на витках, разделенных по времени, но образующих интерференционную пару, предложено запись пары КРЛИ производить в соответствии с фазами приливных воздействий Луны и Солнца, а также проводить сравнение дифференциальных картин с эталонными интерферометрическими картинами и при обнаружении значительных отличий этих картин производить расчет параметров напряженно-деформированного состояния (НДС) земной коры и оценку опасности ее повреждений.

Так, первое КРЛИ из их пары для дифференциальной интерферометрии записывают, например, при отсутствии приливного воздействия Луны на исследуемую зону поверхности Земли, а второе - на одной из фаз приливного воздействия. Дифференциальную интерферометрическую картину сохраняют в качестве эталонной для этого режима приливного воздействия и сравнивают ее с последующими аналогичными картинами. При обнаружении значительных отличий картин, вызванных дополнительными смещениями исследуемой зоны земной поверхности, производят расчеты изменений параметров НДС земной коры от этих смещений с помощью, например, метода конечных элементов. И далее сравнивают полученные путем экстраполяции максимальные величины параметров НДС земной коры с их допустимыми значениями.

Для космического радиолокационного землеобзора принципиально можно использовать часть электромагнитного спектра - радиоволны, которые с малыми потерями проходят через атмосферу. Их длина волны составляет от единиц сантиметров (частоты 10-18 ГГц) до единиц метров (частоты 200-400 МГц). Электромагнитное излучение характеризуется векторными свойствами - направлением вектора электрического поля или поляризацией. Получаемая радиолокационная информация в цифровом виде представляет собой КРЛИ, каждый элемент (пиксель) которых характеризуется комплексным числом - действительной и мнимой составляющими или амплитудой и фазой, численное значение которых определяет параметры сигнала, принятого от соответствующего элемента на земной поверхности.

Высокая точность способа достигается за счет высокой информативности современных космических РСА с метровым и субметровым пространственным разрешением, возможности оперативного получения информации независимо от времени суток и метеорологических условий, глобального охвата районов съемки. Особо эффективны методы дифференциальной интерферометрии для выявления предвестников опасных явлений в окружающей обстановке: оползней, паводков, критических изменений геометрии природных и искусственных объектов и инженерных сооружений.

Оценку опасности повреждений, в первом приближении, можно производить также следующим образом. По восстановленным с дифференциальных картин интерферограммам изменений нормальных компонент векторов перемещений поверхности Земли можно определить, например, величины изменений изгибных составляющих напряжений (деформаций) у вершин трещин в земной коре и далее находить максимальные величины напряжений (деформаций) вблизи дефектов как сумму номинальных их величин и величин изменений максимальных локальных изгибных составляющих напряжений (деформаций), экстраполированных по величинам соответствующих им, например, параметров нагружения земной коры. И далее сравнивать полученные максимальные величины параметров НДС с допустимыми значениями (см., например, Шабуневич В.И. Способ оценки опасности дефектов трубопровода. Патент России №2172929, 1998).

Способ обнаружения возможности наступления катастрофических явлений, основанный на проведении дифференциальной интерферометрии поверхности Земли, при которой применяется межвитковая интерферометрия по паре КРЛИ (комплексных радиолокационных изображений), полученных на витках, разделенных по времени и образующих интерференционную пару, отличающийся тем, что запись пары КРЛИ производится в соответствии с фазами приливных воздействий Луны и Солнца, а также проводится сравнение дифференциальных картин с эталонными интерферометрическими картинами и при обнаружении значительных отличий этих картин производится расчет параметров НДС (напряженно-деформированного состояния) земной коры и оценка опасности ее повреждений.
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
25.08.2017
№217.015.cece

Способ регулирования резонансных колебаний и устройство для его осуществления

Предложен способ регулирования резонансных колебаний, заключающийся в том, что резонансные колебания центральной цилиндрической или сферической массы (или физического поля), связанной с внешней цилиндрической или сферической массой (или взаимно проникающим полем), концентричной с центральной...
Тип: Изобретение
Номер охранного документа: 0002620711
Дата охранного документа: 29.05.2017
Showing 1-4 of 4 items.
25.08.2017
№217.015.cece

Способ регулирования резонансных колебаний и устройство для его осуществления

Предложен способ регулирования резонансных колебаний, заключающийся в том, что резонансные колебания центральной цилиндрической или сферической массы (или физического поля), связанной с внешней цилиндрической или сферической массой (или взаимно проникающим полем), концентричной с центральной...
Тип: Изобретение
Номер охранного документа: 0002620711
Дата охранного документа: 29.05.2017
26.10.2018
№218.016.9658

Способ определения напряженно-деформированного состояния различных упругих объектов

Изобретение относится к контрольно-измерительной технике, в частности к области диагностики напряженно-деформированного состояния упругих объектов, в частности рельсовых плетей бесстыкового пути. При реализации способа создают конечно-элементную модель упругого объекта, определяют формы и...
Тип: Изобретение
Номер охранного документа: 0002670723
Дата охранного документа: 24.10.2018
08.05.2019
№219.017.490e

Способ исследования параметров напряженно-деформированного состояния упругих объектов

Изобретение относится к исследованию упругих свойств конструкций или сооружений, а именно объектов транспортной инфраструктуры и самих транспортных средств, посредством создания их физических и конечно-элементных (КЭ) моделей. В ходе реализации способа создают геометрически подобные масштабные...
Тип: Изобретение
Номер охранного документа: 0002686870
Дата охранного документа: 06.05.2019
10.05.2023
№223.018.53a8

Способ оценки напряженно-деформированного состояния железнодорожного пути в условиях крайнего севера и сибири

Изобретение относится к железнодорожному транспорту и касается контроля и оценки фактического состояния элементов железнодорожного пути и прилегающей инфраструктуры в условиях Крайнего Севера и Сибири. Согласно способу оценки напряженно-деформированного состояния железнодорожного пути, в...
Тип: Изобретение
Номер охранного документа: 0002795351
Дата охранного документа: 03.05.2023
+ добавить свой РИД