×
10.06.2014
216.012.d16c

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ВОДЫ И ВОДНЫХ РАСТВОРОВ ОТ АНИОНОВ И КАТИОНОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к очистке воды и водных растворов от анионов и катионов и может быть использовано для очистки природных вод, стоков металлургической, машиностроительной и других отраслей промышленности. Очистку воды и водных растворов от анионов и катионов проводят электролизом переменным асимметричным током с использованием нерастворимых электродов, процесс электролиза проводят с барботажем воздухом при диаметре пузырьков воздуха больше межэлектродного расстояния с последующим введением в раствор комплексообразователя - соли железа двухвалентного (FeSO) - в соотношении 5:1 по отношению к начальной концентрации очищаемого иона и дальнейшим отстаиванием раствора в течение 8 суток. Технический результат - повышение степени очистки и снижение удельных энергозатрат. 1 табл., 6 пр.
Основные результаты: Способ очистки воды и водных растворов от анионов и катионов электролизом переменным асимметричным током с использованием нерастворимых электродов, отличающийся тем, что процесс электролиза проводят с барботажем воздухом при диаметре пузырьков воздуха больше межэлектродного расстояния с последующим введением в раствор комплексообразователя - соли железа двухвалентного (FeSO) - в соотношении 5:1 по отношению к начальной концентрации очищаемого иона и дальнейшим отстаиванием раствора в течение 8 суток.

Изобретение относится к очистке воды и водных растворов от анионов и катионов и может быть использовано для очистки природных вод, стоков металлургической, машиностроительной и других отраслей промышленности.

Известны способы очистки воды и водных растворов, представляющие собой электрокоагуляционную обработку, обеспечивающие степень очистки 90-95% [Смирнов Г.Н., Генкин В.Е. Очистка сточных вод в процессах обработки металлов. М.: Металлургия, 1989. 224 с.]. Их недостатками являются применение постоянного электрического тока, что требует дополнительных устройств преобразования переменного электрического тока, и необходимость аэрирования сточных вод после электрокоагуляционной обработки до их осветления.

Известны способы коагуляционной очистки воды и водных растворов, осуществляемые путем добавления в раствор комплексообразователя с последующим отстаиванием [Смирнов Г.Н., Генкин В.Е. Очистка сточных вод в процессах обработки металлов. М.: Металлургия, 1989. 224 с.; Технические записки по проблемам воды / К.Барак [и др.]; под ред. Т.А.Карюхиной, И.Н.Чурбановой. М.: Стройиздат, 1983. 607 с.]. Недостатком этих способов является большой расход реагентов и невысокая степень очистки.

Известен способ очистки воды и водных растворов от ионов металлов путем электролиза с использованием нерастворимых электродов при наложении переменного синусоидального напряжения [Способ электрохимической очистки воды и водных растворов от ионов тяжелых металлов. Авт. Св. СССР №1724591, кл. C02F 1/46, 1991]. Этот способ взят за прототип. Главный недостаток данного способа - невысокая степень очистки и значительные энергозатраты (1,5-2 (кВт·ч)/м3).

Задача изобретения - повышение степени очистки и снижение удельных энергозатрат.

Это достигается тем, что очистку воды и водных растворов переменным асимметричным током проводят электролизом с использованием пар нерастворимых разнородных электродов и барботированием раствора воздухом, после чего вводят в раствор комплексообразователь и проводят отстаивание.

В качестве комплексообразователя применяют соль железа двухвалентного FeSO4 [Гликина Ф.Б. Химия комплексных соединений: учеб. пособие для вузов. М.: Просвещение, 1982. 160 с.]. Соотношение начальных концентраций комплексообразователя и очищаемого иона - 5:1.

Барботирование очищаемого раствора проводят при условии, что диаметр пузырьков воздуха должен быть больше расстояния между электродами.

Время отстаивания водного раствора 8 суток.

Экспериментальные данные показали, что дальнейшее повышение соотношения начальных концентраций и времени отстаивания не приводит к существенному увеличению степени очистки, а при соотношении начальных концентраций меньше 5:1 и времени отстаивания менее 8 суток степень очистки значительно ниже. При барботировании раствора воздухом, если диаметр пузырьков меньше расстояния между электродами, степень очистки уменьшается.

Для реализации предлагаемого способа процесс очистки проводят в электролизере из чередующихся электродов, выполненных в виде пластин. Материал электродов: нержавеющая сталь 12Х18Н10Т, титановый сплав ОТ 4-0. Температура воды 20-25°C. Расстояние между электродами 12 мм. Объем заливаемого водного раствора 1 литр. Продолжительность электролиза 10 минут при силе тока 0,5 А и напряжении на клеммах электродов 4,1 В.

Обработке подвергались водные растворы, содержащие ионы кадмия (II), меди (II), никеля (II) и хрома (VI). Начальная концентрация каждого иона в растворе 0,5 мг/л.

Пример 1. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 8 суток.

Степень очистки определялась по формуле, %:

где Сo, Ск - начальная и конечная концентрации очищаемого иона металла, мг/л.

Удельные энергозатраты W определялись по формуле, (кВт·ч)/м3:

где I - сила тока, А;

U - напряжение на клеммах электродов, В;

τ - продолжительность электролиза, ч;

V - объем заливаемого водного раствора, м3;

10-3 - переводной коэффициент из Вт в кВт.

Степени очистки водного раствора равны: для никеля YNi=34,44%, для кадмия YCd=63,44%, для меди YCu=99,56%, для хрома YCr=99,98% и для железа YFe=99,28%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 2. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 6:1. Начальная концентрация иона-комплексообразователя в растворе была равна 12 мг/л. Время отстаивания 8 суток.

Степени очистки водного раствора равны: для никеля YNi=34,62%, для кадмия YCd=63,74%, для меди YCu=99,63%, для хрома YCr=99,99% и для железа YFe=99,88%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 3. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 2,5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 5 мг/л. Время отстаивания 8 суток.

Степени очистки водного раствора равны: для никеля YNi=24,23%, для кадмия YCd=46,75%, для меди YCu=81,23%, для хрома YCr=74,32% и для железа YFe=92,21%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 4. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 10 суток.

Степени очистки водного раствора равны: для никеля YNi=35,24%, для кадмия YCd=64,22%, для меди YCu=99,16%, для хрома YCr=99,98% и для железа YFe=99,58%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 5. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков больше расстояния между электродами (>12 мм). После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 4 суток.

Степени очистки водного раствора равны: для никеля YNi=29,17%, для кадмия YCd=51,24%, для меди YCu=91,76%, для хрома YCr=86,88% и для железа YFe=99,18%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Пример 6. Электролизу подвергался водный раствор при параметрах, указанных выше, с барботированием воздухом. Барбатирование раствора проводилось при условии, что диаметр пузырьков равен 3 мм. После электролиза вводился комплексообразователь FeSO4. Соотношение начальных концентраций иона-комплексообразователя и очищаемого иона составляло 5:1. Начальная концентрация иона-комплексообразователя в растворе была равна 10 мг/л. Время отстаивания 8 суток.

Степени очистки водного раствора равны: для никеля YNi=26,93%, для кадмия YCd=52,44%, для меди YCu=84,79%, для хрома YCr=77,83% и для железа YFe=99,3%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Количественный анализ ионов, содержащихся в водном растворе после очистки, проводился на масс-спектрометре Agilent 7500 ICP-MS.

Результаты опытов по очистке раствора от хрома (VI) по сравнению с прототипом приведены в таблице .

Результаты опытов по очистке от Cr6+ по сравнению с прототипом
Способ Сo, мг/л Ск, мг/л ПДК, мг/л Y, % W, (кВт·ч)/м3
По прототипу 0,5 0,02 0,001 96 1,5-2
Предлагаемым способом 0,5 0,0001 99,98 0,47

Экспериментальные данные показали, что максимальная степень очистки достигается при электролизе воды и водных растворов барботированием воздухом с диаметром пузырьков больше межэлектродного расстояния, введением комплексообразователя - соли железа двухвалентного (FeSO4), в соотношении 5:1 и отстаиванием раствора в течение 8 суток. При этом степени очистки водного раствора равны: для никеля YNi=34,44%, для кадмия YCd=63,44%, для меди YCu=99,56%, для хрома YCr=99,98% и для железа YFe=99,28%. Удельные энергозатраты составляют W=0,47 (кВт·ч)/м3.

Способ очистки воды и водных растворов от анионов и катионов электролизом переменным асимметричным током с использованием нерастворимых электродов, отличающийся тем, что процесс электролиза проводят с барботажем воздухом при диаметре пузырьков воздуха больше межэлектродного расстояния с последующим введением в раствор комплексообразователя - соли железа двухвалентного (FeSO) - в соотношении 5:1 по отношению к начальной концентрации очищаемого иона и дальнейшим отстаиванием раствора в течение 8 суток.
Источник поступления информации: Роспатент

Showing 221-230 of 236 items.
29.03.2019
№219.016.f5da

Способ переработки золотосодержащего сырья для извлечения золота

Изобретение относится к обогащению полезных ископаемых, в частности к переработке золотосодержащих руд. Исходное сырье измельчают и приготавливают из него пульпу. Пульпу обрабатывают с введением реагентов, собирателя и носителя при перемешивании и отделяют полученный золотосодержащий агломерат....
Тип: Изобретение
Номер охранного документа: 0002455373
Дата охранного документа: 10.07.2012
10.04.2019
№219.017.09e2

Способ производства анодной массы

Изобретение относится к способу производства анодной массы для самообжигающихся анодов алюминиевых электролизеров и может быть использовано в производстве обожженных анодов. В способе производства анодной массы, включающем предварительный раздельный нагрев коксовой шихты, коксовой пыли и пека,...
Тип: Изобретение
Номер охранного документа: 0002464360
Дата охранного документа: 20.10.2012
10.04.2019
№219.017.0a1d

Способ проветривания карьера

Изобретение относится к горной промышленности и может быть применено при проветривании глубоких карьеров, расположенных в долинах крупных рек. Способ включает установку восходящих воздухопроводных каналов на борту и за пределами карьера и соединение их магистральными воздухопроводными каналами,...
Тип: Изобретение
Номер охранного документа: 0002460885
Дата охранного документа: 10.09.2012
19.04.2019
№219.017.31eb

Генератор озона

Изобретение относится к производству озона и может быть использован для очистки воды и обработки помещений в медицине. Генератор озона содержит разрядную камеру в виде прямоугольного параллелепипеда, внутри которой стопкой уложены плоские электроды и диэлектрические барьеры, имеется входная и...
Тип: Изобретение
Номер охранного документа: 0002458855
Дата охранного документа: 20.08.2012
29.04.2019
№219.017.4479

Анодный токоподвод алюминиевого электролизера

Изобретение относится к конструкции анодного токоподвода электролизера для получения алюминия. Анодный токоподвод алюминиевого электролизера, состоящий из вертикального наращиваемого стержня, выполнен из соединенных встык с созданием электрического контакта керамических открытопористых и...
Тип: Изобретение
Номер охранного документа: 0002456382
Дата охранного документа: 20.07.2012
29.04.2019
№219.017.4676

Керамическая масса для изготовления кирпича

Изобретение относится к области строительства, в частности к получению эффективного керамического строительного кирпича. Техническим результатом изобретения является снижение теплопроводности и плотности кирпича. Керамическая масса для изготовления кирпича содержит среднепластичную глину и...
Тип: Изобретение
Номер охранного документа: 0002462433
Дата охранного документа: 27.09.2012
09.05.2019
№219.017.5090

Способ определения величины подработки массива твердеющей закладки

Изобретение относится к горной промышленности, а именно к подземной разработке месторождений полезных ископаемых, с заполнением выработанного пространства твердеющей закладкой. Техническим результатом является определение величины подработки массива твердеющей закладки. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002464425
Дата охранного документа: 20.10.2012
18.05.2019
№219.017.5b9c

Устройство для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами

Изобретение относится к цветной металлургии, в частности к получению алюминия в электролизерах с предварительно обожженными анодами, и может быть применено для улавливания выбросов при выполнении технологических операций, связанных с разгерметизацией укрытий. Устройство для сбора и эвакуации...
Тип: Изобретение
Номер охранного документа: 0002468127
Дата охранного документа: 27.11.2012
29.05.2019
№219.017.680c

Стекло для получения пеностекла (варианты)

Изобретение относится к составам стекол, используемых для получения шлакового пеностекла. Технический результат заключается в снижении себестоимости, оптимальной температуры варки и вспенивания стекла. Сырьем для получения стекла являются отходы теплоэнергетики. Стекло для получения пеностекла...
Тип: Изобретение
Номер охранного документа: 0002424999
Дата охранного документа: 27.07.2011
29.05.2019
№219.017.69b1

Способ приготовления порошковой шихты ag/sno для разрывных электроконтактов

Изобретение относится к области порошковой металлургии, в частности к производству изделий из металлических порошков. Может использоваться при получении композиционных металлокерамических материалов для разрывных электроконтактов на серебряной основе, используемых в низковольтной аппаратуре....
Тип: Изобретение
Номер охранного документа: 0002442835
Дата охранного документа: 20.02.2012
Showing 221-224 of 224 items.
25.12.2019
№219.017.f225

Способ изготовления гибко-плоского электронагревателя

Изобретение относится к областям электротермии и космического машиностроения и может быть использовано при изготовления гибких, плоских, гибко-плоских электронагревателей, поддерживающих в работоспособном состоянии радиоэлектронную аппаратуру космического аппарата при воздействии условий...
Тип: Изобретение
Номер охранного документа: 0002710029
Дата охранного документа: 24.12.2019
12.04.2023
№223.018.4a1e

Способ получения тонкодисперсного графитового порошка

Изобретение относится к получению порошка на основе графита, который может быть использован в качестве основного компонента многофункциональных покрытий в ракетно-космической и авиационной технике, а также в ядерной энергетике, металлургии, машино- и приборостроении, солнечной энергетике, при...
Тип: Изобретение
Номер охранного документа: 0002793823
Дата охранного документа: 06.04.2023
16.05.2023
№223.018.6314

Электрохимический способ получения мелкодисперсного порошка графита

Изобретение относится к электрохимическому способу получения мелкодисперсного порошка графита, заключающемуся в погружении в рабочий раствор диафрагменного электролизера коаксиально расположенных электродов - графитового анода и катода из нержавеющей стали, и подводе к ним электрического тока....
Тип: Изобретение
Номер охранного документа: 0002771846
Дата охранного документа: 12.05.2022
16.06.2023
№223.018.79c3

Гибко-плоский электронагреватель

Изобретение относится к области космического машиностроения и может быть использовано при изготовлении гибких, плоских, гибко-плоских электронагревателей (ЭН) космических аппаратов (КА). Технический результат - создание ЭН с увеличенным КПД для условий штатной работы в составе КА...
Тип: Изобретение
Номер охранного документа: 0002737666
Дата охранного документа: 02.12.2020
+ добавить свой РИД