×
27.05.2014
216.012.c81b

Результат интеллектуальной деятельности: РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002516993
Дата охранного документа
27.05.2014
Аннотация: Заявленное рабочее колесо осевого вентилятора может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Рабочее колесо содержит ступицу с основаниями, снабженными пазами шириной S. В указанных пазах установлены хвостовики листовых лопаток толщиной s, присоединенные к основаниям посредством штифтового соединения. Внутренние поверхности хвостовика и паза выполнены в виде участков кругового цилиндра разных радиусов. При этом в первом варианте внутренние поверхности хвостовика и паза обращены друг к другу, а во втором - наружные поверхности хвостовика и паза обращены друг к другу. Приведены математические выражения для радиуса паза как функции от радиуса хвостовика, толщин паза и хвостовика и хорды хвостовика. Группа изобретений направлена на повышение надежности и технологичности. 2 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники.

Известно рабочее колесо осевого вентилятора, содержащее ступицу с выполненными заодно с ней профилированными лопатками (см. патент РФ №2133383, МПК: F04D 19/00, 1999 г.). Недостатком этого рабочего колеса осевого вентилятора является сложность конструкции, вызванная выполнением профилированных лопаток заодно со ступицей.

Этого недостатка лишено рабочее колесо осевого вентилятора, содержащее ступицу с основаниями, снабженными пазами шириной S, в которых установлены хвостовики листовых лопаток толщиной s, присоединенные к основаниям посредством штифтовых соединений, выбранное в качестве прототипа (см. патент РФ N 2422681, МПК: F04D 19/02, 2011 г.) Выполнение лопаток листовыми существенно упрощает конструкцию рабочего колеса.

Недостатком такого рабочего колеса осевого вентилятора является его низкая надежность, что вызвано наличием зазора в соединении между хвостовиком листовой лопатки и пазом за счет допусков на толщину листа и ширину паза. Наличие допусков на толщину листа, из которого изготавливают лопатки, неизбежно, также невозможно изготовление паза (а его можно сделать либо методом фрезерования, либо методом электроэрозионной обработки) с высокой точностью, обеспечивавшей бы плотную посадку хвостовика в паз. При вибрациях, свойственных изделиям авиационной, а особенно космической техники, листовая лопатка начинает колебаться в пределах указанного зазора, что приводит к увеличению амплитуды ее колебаний, и, в конечном итоге, к разрушению лопатки, вызванному циклическими напряжениями изгиба. Другим недостатком рабочего колеса является низкая технологичность, что связано с необходимостью крепления хвостовика каждой лопатки к основанию как минимум двумя штифтами - при креплении хвостовика лопатки одним штифтом невозможно обеспечить фиксацию лопатки в угловом направлении относительно оси этого штифта.

Техническим результатом заявляемого устройства является повышение надежности и технологичности.

Указанный технический результат по первому варианту достигается за счет того, что в известном рабочем колесе осевого вентилятора, содержащем ступицу с основаниями, снабженными пазами шириной S, в которых установлены хвостовики листовых лопаток толщиной s, присоединенные к основаниям посредством штифтового соединения, в отличие от известного внутренняя поверхность хвостовика каждой листовой лопатки выполнена в виде участка кругового цилиндра радиуса r с образующей, параллельной продольной оси листовой лопатки, а внутренняя поверхность паза каждого основания выполнена в виде участка кругового цилиндра радиуса R с образующей, параллельной образующей внутренней поверхности хвостовика листовой лопатки, и внутренние поверхности хвостовика и паза обращены друг к другу, при этом

где d=S-s, a L - половина ширины хорды хвостовика листовой лопатки по ее внутренней поверхности;

Указанный технический результат по второму варианту достигается за счет того, что в известном рабочем колесе осевого вентилятора, содержащем ступицу с основаниями, снабженными пазами шириной S, в которых установлены хвостовики листовых лопаток толщиной s, присоединенные к основаниям посредством штифтового соединения, в отличие от известного, наружная поверхность хвостовика каждой листовой лопатки выполнена в виде участка кругового цилиндра радиуса rH с образующей, параллельной продольной оси листовой лопатки, а наружная поверхность паза каждого основания выполнена в виде участка кругового цилиндра радиуса R с образующей, параллельной образующей внутренней поверхности хвостовика листовой лопатки, и наружные поверхности хвостовика и паза обращены друг к другу, при этом

где d=S-s, a L - половина ширины хорды хвостовика листовой лопатки по ее наружной поверхности.

Дополнительно, для максимального упрощения конструкции, при реализации как первого варианта, так и второго варианта, основания могут быть выполнены за одно целое со ступицей, при этом в конструкциях осевых вентиляторов с достаточно большим втулочным отношением, при котором окружные скорости точек в любом сечении лопатки близки по значению, вся листовая лопатка может быть выполнена с постоянным по ее длине профилем (как рабочая часть лопатки, находящаяся в потоке перекачиваемого воздуха, так и ее хвостовик).

На фиг.1 приведен пример конкретного выполнения рабочего колеса осевого вентилятора, первый вариант, главный вид; на фиг.2 - то же, вид справа; на фиг.3 - то же, вид сверху; на фиг.4 - расчетная схема для вывода математической зависимости, первый вариант; на фиг.5 - пример конкретного выполнения рабочего колеса осевого вентилятора, второй вариант, главный вид; на фиг.6 - то же, вид сверху; на фиг.7 - расчетная схема для вывода математической зависимости, второй вариант. Фиг.2 относится к обоим вариантам исполнения рабочего колеса осевого вентилятора.

Рабочее колесо осевого вентилятора, как по первому варианту, так и по второму варианту, содержит ступицу 1 с основаниями 2, снабженными пазами 3, в которых установлены хвостовики 4 листовых лопаток 5, присоединенные к основаниям 2 посредством штифтового соединения штифтом 6. У каждой лопатки 5 есть продольная ось 7. Ширина каждого паза 3 равна S, а толщина хвостовика 4 каждой листовой лопатки 5 равна s. При выполнении рабочего колеса по первому варианту внутренняя поверхность 8 хвостовика 4 каждой листовой лопатки 5 выполнена в виде участка кругового цилиндра радиуса r с образующей, параллельной продольной оси 7 листовой лопатки 5, а внутренняя поверхность 9 паза 3 каждого основания 2 выполнена в виде участка кругового цилиндра радиуса R с образующей, параллельной образующей внутренней поверхности 8 хвостовика 4 листовой лопатки 5, внутренние поверхности 8 хвостовика 4 и 9 паза 3 обращены друг к другу, при этом

где d=S-s, a L - половина ширины хорды хвостовика листовой лопатки по ее внутренней поверхности.

Рабочее колесо осевого вентилятора работает следующим образом: при приведении ступицы 1 во вращение от вала, установленного внутри нее (не показан), листовые лопатки 5 создают поток перекачиваемого газа. При этом за счет выполнения геометрических размеров паза и хвостовика по приведенной в формуле изобретения геометрической зависимости обеспечивается беззазорное соединение хвостовика 4 в пазу 3 - хвостовик 4 имеет три зоны линейного контакта со стенками паза 3 - одна зона контакта по образующей наружной поверхности хвостовика 4 в середине хвостовика и две зоны контакта по образующим внутренней поверхности хвостовика 4 по краям его поперечного сечения. Беззазорное соединение хвостовика с пазом позволяет устранить возможность колебаний лопаток 5 относительно пазов 3 и позволяет обеспечить угловую фиксацию лопатки 5 использованием только одного штифта 6 в каждом соединении хвостовика 4 с пазом 3. При попытке «провернуть» лопатку в угловом направлении относительно оси штифта 6 (за счет сил инерции, реакции потока перекачиваемого газа на лопатку) возникают реакции со стороны указанных трех зон линейного контакта, препятствующие этому перемещению, поскольку такое перемещение сразу вызывает упругие деформации хвостовика 4 лопатки 5, препятствующие такому перемещению. Таким образом, штифт обеспечивает фиксацию лопатки в радиальном направлении, а указанные три зоны линейного контакта - фиксацию лопатки в угловом направлении. Признак «внутренние поверхности хвостовика и паза обращены друг к другу» однозначно определяет их взаимное положение, для которого справедливы вышеприведенные выводы и расчетная схема. Теоретически возможно и другое взаимное расположение - когда внутренняя поверхность хвостовика и наружная поверхность паза обращены друг к другу - для него приведенное математическое выражение неприменимо, но такое взаимное расположение не имеет практического смысла, т.к. может быть обеспечено лишь при большой величине d = S-s, что будет сильно снижать аэродинамические характеристики колеса за счет сильной турбулизации потока. Для наглядности проведем расчет значения R для хвостовика лопатки со следующими параметрами: s = 1 мм, L = 6 мм, S = 1+0,2мм, r = 35 мм. Подставив эти значения (приняв для S максимально возможное с учетом допуска S = 1,2 мм, получим по математическому выражению: R ≥ 56, 41 мм.

Ниже приведен вывод математической зависимости для первого варианта. На фиг.4 приведена расчетная схема, где точка А - середина хорды внутренней поверхности хвостовика, В - крайняя точка внутренней поверхности хвостовика, О и О1- центры внутренних поверхностей паза 3 и хвостовика 4 соответственно, точка С - точка касания наружной поверхности хвостовика 4 и наружной поверхности паза 3. На фиг.4 приведен случай, когда наружная поверхность хвостовика 4 точно касается (без зазора и натяга) наружной поверхности паза 3.

Тогда расстояние

Примем расстояние AC=h (высота верхней точки профиля наружной поверхности хвостовика 4 над хордой внутренней поверхности хвостовика.

- следует из свойств прямоугольного треугольника O1AB.

Аналогично, приняв расстояние АС - Н (высота верхней точки профиля наружной поверхности паза 3 над хордой внутренней поверхности хвостовика - в общем случае величины Н и h не равны друг другу, но на фиг.4 приведен частный случай равенства), из свойств треугольника ОАВ получим:

очевидно, что условием беззазорного соединения будет неравенство Н ≤ h (4), т.е. хвостовик лопатки, опираясь краями (точка В и вторая, не показанная на фиг.4, но симметричная ей относительно прямой О1О) на внутреннюю поверхность паза 3, своей наружной поверхностью опирается на наружную поверхность паза 3 в точке С.

Подставив в (4) значения Н и h из выражений (3) и (2), получим

Введя обозначение d=S-s, получим, перенеся некоторые члены неравенства:

Введем обозначение и подставим в (6):

Возведя обе части неравенства в квадрат и приведя подобные члены, получим:

или

Поскольку N - величина положительная (на фиг.4 это расстояние от точки А до внутренней поверхности паза 3, измеренное по прямой ОС), то R ≥N/2+L2/2N (11), откуда, подставив значение N из (7), получим приведенное в формуле изобретения для первого варианта математическое выражение.

Конструкция рабочего колеса осевого вентилятора (второй вариант) в основном схожа с конструкцией рабочего колеса по первому варианту. Отличия в следующем: наружная поверхность 10 хвостовика 4 каждой листовой лопатки 5 выполнена в виде участка кругового цилиндра радиуса RH с образующей, параллельной продольной оси 7 листовой лопатки 5, а наружная поверхность 11 паза 3 каждого основания 2 выполнена в виде участка кругового цилиндра радиуса RH с образующей, параллельной образующей наружной поверхности 10 хвостовика 4 листовой лопатки 5, наружные поверхности 10 хвостовика 4 и 11 паза 3 обращены друг к другу, при этом

где d=S-s, a L - половина ширины хорды хвостовика листовой лопатки по ее наружной поверхности.

Рабочее колесо осевого вентилятора (второй вариант) работает следующим образом: при приведении ступицы 1 во вращение от вала, установленного внутри нее (не показан), листовые лопатки 5 создают поток перекачиваемого газа. При этом за счет выполнения геометрических размеров паза и хвостовика по приведенной в формуле изобретения геометрической зависимости обеспечивается беззазорное соединение хвостовика 4 в пазу 3 - хвостовик 4 имеет три зоны линейного контакта со стенками паза 3 - одна зона контакта по образующей внутренней поверхности хвостовика 4 в середине хвостовика и две зоны контакта по образующим наружной поверхности хвостовика 4 по краям его поперечного сечения. Беззазорное соединение хвостовика с пазом позволяет устранить возможность колебаний лопаток 5 относительно пазов 3, и позволяет обеспечить угловую фиксацию лопатки 5 использованием только одного штифта 6 в каждом соединении хвостовика 4 с пазом 3. При попытке «провернуть» лопатку в угловом направлении относительно оси штифта 6 (за счет сил инерции, реакции потока перекачиваемого газа на лопатку) возникают реакции со стороны указанных трех зон линейного контакта, препятствующие этому перемещению, поскольку такое перемещение сразу вызывает упругие деформации хвостовика 4 лопатки 5, препятствующие такому перемещению. Таким образом, штифт обеспечивает фиксацию лопатки в радиальном направлении, а указанные три зоны линейного контакта - фиксацию лопатки в угловом направлении. Признак «наружные поверхности хвостовика и паза обращены друг к другу» однозначно определяет их взаимное положение, для которого справедливы вышеприведенные выводы и расчетная схема. Теоретически возможно и другое взаимное расположение - когда внутренняя поверхность хвостовика и наружная поверхность паза обращены друг к другу - для него приведенное математическое выражение неприменимо, но такое взаимное расположение не имеет практического смысла, т.к. может быть обеспечено лишь при большой величине d = S-s, что будет сильно снижать аэродинамические характеристики колеса за счет сильной турбулизации потока.

Ниже приведен вывод математической зависимости для второго варианта. На фиг.7 приведена расчетная схема, где точка D -середина хорды наружной поверхности хвостовика, Е - крайняя точка наружной поверхности хвостовика, Q и Q1 - центры наружных поверхностей паза 3 и хвостовика 4 соответственно, точка F - точка касания внутренней поверхности хвостовика 4 и внутренней поверхности паза 3. На фиг.7 приведен случай, когда внутренняя поверхность хвостовика 4 точно касается (без зазора и натяга) внутренней поверхности паза 3.

Тогда расстояние Q1F = rH - s (12)

Примем расстояние FD= z (расстояние от центра профиля внутренней поверхности хвостовика 4 до хорды наружной поверхности хвостовика

- следует из свойств прямоугольного треугольника Q1ED.

Аналогично, приняв расстояние DF - Z (расстояние от центра профиля внутренней поверхности паза 3 до хорды наружной поверхности хвостовика в общем случае величины Z и z не равны друг другу, но на фиг.7 приведен частный случай равенства), из свойств треугольника QED получим:

Очевидно, что условием беззазорного соединения будет неравенство Z ≤ z (15), т.е. хвостовик лопатки, опираясь краями (точка Е и вторая, не показанная на фиг.7, но симметричная ей относительно прямой Q1Q) на наружную поверхность паза 3, своей внутренней поверхностью опирается на внутреннюю поверхность паза 3 в точке F.

Подставив в (15) значения Z и z из выражений (14) и (13), получим

Введя обозначение d-S-s, получим, перенеся некоторые члены неравенства:

Введем обозначение (18) и подставим в (17):

Возведя обе части неравенства в квадрат и приведя подобные члены, получим:

,или

Поскольку М величина положительная (на фиг.4 это расстояние DG),то

откуда, подставив значение М из (18), получим приведенное в формуле изобретения для второго варианта математическое выражение.

В приведенных примерах конкретного исполнения рабочего колеса, как по первому варианту, так и по второму варианту, основания выполнены за одно целое со ступицей в виде фрезерованных выступов на внутренней стороне ступицы. Однако, возможно и крепление лопатки к поворотному (как в прототипе) основанию, поэтому в независимых пунктах формулы изобретения приведен обобщающий признак «основание», которое может быть как элементом ступицы, так и установленной в ней отдельной детали. Также в примерах конкретного исполнения приведен случай, когда вся листовая лопатка выполнена с постоянным по ее длине профилем. Однако заявленное изобретение может быть использовано и в случае разных сечений хвостовика и рабочей части лопатки. Приведенные математические выражения накладывают точный предел только с одной стороны - минимальное значение радиуса внутренней поверхности паза для первого варианта, и максимальное значение радиуса наружной поверхности паза для второго варианта. Конкретное значение этих радиусов определяется методами обычного проектирования, например, исходя из критерия, чтобы при установке хвостовиков в пазы деформации хвостовиков оставались бы упругими.

В результате использования изобретения существенно повышается надежность рабочего колеса, т.к. беззазорное соединение хвостовика с пазом позволяет устранить возможность колебаний лопаток 5 относительно пазов 3. Также повышается и технологичность рабочего колеса за счет обеспечения фиксации лопатки использованием только одного штифта. Указанные преимущества позволяют рекомендовать заявленное техническое решение для использования в изделиях авиационной и космической техники.

Литература

1. Патент РФ №2133383, МПК: F04D 19/00, 1999 г.

2. Патент РФ N 2422681, МПК: F04D 19/02, 2011 г. (прототип).


РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО ОСЕВОГО ВЕНТИЛЯТОРА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 121-130 of 372 items.
20.03.2015
№216.013.3467

Способ измерения пространственного распределения теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала....
Тип: Изобретение
Номер охранного документа: 0002544890
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3468

Способ определения комплекса теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева...
Тип: Изобретение
Номер охранного документа: 0002544891
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.346b

Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта....
Тип: Изобретение
Номер охранного документа: 0002544894
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3552

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков, стыковочными механизмами, направляющими узлами со штырем с заходным конусом и гнездом с...
Тип: Изобретение
Номер охранного документа: 0002545134
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.38da

Посадочное устройство космического аппарата

Изобретение относится к ракетно-космической технике и может быть использовано в посадочных устройствах (ПУ) космических аппаратов (КА). ПУ КА содержит стойку, состоящую из стакана с внутренним амортизирующим элементом, соединенного с цилиндрическим шарниром и телескопически с подвижным штоком,...
Тип: Изобретение
Номер охранного документа: 0002546042
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.38f5

Дипольная антенна

Изобретение относится к антенной технике, в частности к дипольным антеннам с отражающим экраном с полунаправленной диаграммой направленности, и может быть использовано в технике связи для приема сигналов навигационных систем и для организации приемо-передающего канала с Землей в...
Тип: Изобретение
Номер охранного документа: 0002546069
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3db6

Система контроля скорости космических аппаратов при сближении

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов (КА), а именно к оптико-электронным системам контроля скорости. Система контроля скорости космических аппаратов при сближении включает расположенные на активном космическом...
Тип: Изобретение
Номер охранного документа: 0002547286
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4012

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (KA), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547890
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4016

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547894
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4017

Способ определения альбедо земной поверхности

Изобретение относится к космической технике. Способ определения альбедо земной поверхности включает развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной...
Тип: Изобретение
Номер охранного документа: 0002547895
Дата охранного документа: 10.04.2015
Showing 121-130 of 318 items.
27.02.2015
№216.013.2d73

Ионный двигатель

Изобретение относится к энергетике. Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет торообразную форму, причем...
Тип: Изобретение
Номер охранного документа: 0002543103
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ed0

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус (1), установленные внутри него электродвигатель (5), датчик (6) углового положения, связанный с выходным валом электропривода, и...
Тип: Изобретение
Номер охранного документа: 0002543452
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ee9

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков и стыковочными механизмами, пружинные толкатели, штыри с заходными конусами, гнезда с...
Тип: Изобретение
Номер охранного документа: 0002543477
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f1b

Способ измерения скорости движения объектов по их телевизионным изображениям

Изобретение относится к области прикладного телевидения с использованием регистрации излученного или отраженного лучистого потока от объектов в разных зонах оптического спектра для решения задач контроля и анализа состояния объектов по их телевизионным (ТВ) изображениям. Изобретение может найти...
Тип: Изобретение
Номер охранного документа: 0002543527
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f37

Трехканальный релейный коммутатор

Изобретение относится к электронным устройствам автоматики. Технический результат заключается в повышении надежности и помехоустойчивости. Устройство содержит: три входа, первый из которых через параллельно соединенные первую и вторую обмотки реле подключен к источнику питания, второй вход...
Тип: Изобретение
Номер охранного документа: 0002543555
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3252

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе ее сборки на соответствие техническим требованиям....
Тип: Изобретение
Номер охранного документа: 0002544357
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3467

Способ измерения пространственного распределения теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала....
Тип: Изобретение
Номер охранного документа: 0002544890
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3468

Способ определения комплекса теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева...
Тип: Изобретение
Номер охранного документа: 0002544891
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.346b

Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта....
Тип: Изобретение
Номер охранного документа: 0002544894
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3552

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков, стыковочными механизмами, направляющими узлами со штырем с заходным конусом и гнездом с...
Тип: Изобретение
Номер охранного документа: 0002545134
Дата охранного документа: 27.03.2015
+ добавить свой РИД