×
20.05.2014
216.012.c6e8

Результат интеллектуальной деятельности: ЛИТОЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминия для изготовления отливок и деформируемых изделий электротехнического назначения. ЛКМ содержит в качестве матричного компонента алюминий технической чистоты, а в качестве армирующего компонента - дискретные керамические частицы углеродсодержащей боридной фазы CAlB в количестве 0,1-0,6 мас.%, синтезированные в расплаве. Способ получения ЛКМ включает введение в расплав технического алюминия лигатуры Al-В, перемешивание в течение 5-10 мин, введение в расплав при температуре 980-1000°C алмазографитового наноразмерного порошка и выдерживание в течение 10-15 мин для протекания синтеза керамических дискретных частиц и их распределения в объеме расплава, проведение модифицирования расплава лигатурой Al-Sr, перемешивание и разливку при температуре 740-750°C. Техническим результатом является создание ЛКМ на основе алюминия, обладающего повышенной электропроводностью, прочностью и пластичностью, позволяющей подвергать композиционный материал холодной деформации и достигать высокой степени обжатия без промежуточных отжигов, и способа получения ЛКМ, отличающегося экологической безопасностью, снижением трудоемкости и повышением качества композиционного материала. 2 н.п. ф-лы, 1 пр., 1 табл., 1 ил.

Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминия для изготовления отливок и деформируемых заготовок электротехнического назначения с повышенными эксплуатационными свойствами.

Известен способ получения литого композиционного материала на основе алюминиевого сплава (пат. РФ №2353475 от 27.04.2009), заключающийся в смешивании в размольно-смесительном устройстве порошков матричного компонента из алюминиевого сплава Al+3%Mg и армирующих дискретных керамических частиц карбида кремния зернистостью 30-50 мкм в количестве 3-5 мас.% или 9-15 мас.%, брикетирование смеси под давлением 28-35 МПа, введение брикетов в расплав сплава Al+3%Mg, перемешивание расплава и разливка.

Недостатком предложенного изобретения является большой размер упрочняющих частиц SiC, что не позволяет проводить обработку давлением композиционного материала, необходимость применения специализированного оборудования и сложность равномерного распределения армирующих частиц в объеме заготовки.

Известен также способ получения композиционного материала алюминий-карбид кремния (пат. РФ №2348719 от 10.03.2009), согласно которому карбидные включения SiC более мелких размеров (1-10 мкм) синтезируют в расплаве алюминиево-кремниевого сплава при обработке его углекислым газом. В результате модифицирующего эффекта измельчаются структурные составляющие сплава и полученный композиционный материал может обрабатываться давлением. Однако в результате обработки расплава углекислым газом он окисляется, и образовавшиеся оксидные включения снижают качество композиционного материала.

Кроме того, в приведенных аналогах упрочняющими частицами является карбид кремния, который является полупроводником и резко снижает электропроводность композиционного материала.

В качестве прототипа был выбран способ получения литейного композиционного сплава алюминий-карбид титана (пат. РФ №2448178 от 18.08.2009), включающий плавление алюминия и последующий порционный ввод в расплав экзотермической СВС-смеси, состоящей из порошков титана, углерода и флюса криолита в стехиометрическом соотношении, позволяющем синтезировать в расплаве включения карбида титана размером 1-2 мкм с общим его содержанием не более 10 мас.%. В зоне экзотермической реакции температура достигает 1500°C, что ускоряет процесс образования TiC и улучшает смачивание частиц и их равномерное распределение в объеме расплава. Однако высокий локальный перегрев расплава над ликвидусом сопровождается бурным газовыделением и возможным образованием карбида алюминия, который располагается на границе матрица - TiC в виде охрупченного слоя. Карбид алюминия восприимчив к воздействию влаги с образованием гидроокиси алюминия и вызывает коррозию материала на межфазной границе. В результате композиционный материал может быть значительно ослаблен.

Задача, на решение которой направленно заявленное изобретение, заключается в разработке состава и способа производства ЛКМ на основе алюминия и дискретных тугоплавких керамических частиц, позволяющего исключить применение высокотемпературного СВС-процесса для синтеза нано- и микроразмерных частиц углеродсодержащих фаз - упрочнителей алюминиевой матрицы, добиться их диспергирования и равномерного распределения в матрице.

Техническим результатом является создание ЛКМ на основе алюминия, обладающего повышенной электропроводностью, прочностью и пластичностью, позволяющей подвергать композиционный материал холодной деформации и достигать высокой степени обжатия без промежуточных отжигов, и способа получения ЛКМ, отличающегося экологической безопасностью, снижением трудоемкости и повышением качества композиционного материала.

Технический результат достигается тем, что в предложенном литом композиционном материале на основе алюминия, состоящем из технического алюминия и дискретных керамических частиц, новым является то, что в качестве армирующих дискретных керамических частиц он содержит углеродсодержащий борид алюминия с размером частиц менее 1-2 мкм в количестве 0,1-0,6 мас.%, а в качестве матричного компонента технический алюминий, предварительно рафинированный от примесей Ti, V и модифицированный стронцием в количестве 0,01-0,03 мас.%.

Предлагаемый способ получения литого композиционного материала на основе алюминия состоит в плавлении алюминия под слоем флюса и введении в расплав реакционной смеси, и отличается тем, что предварительно в расплав технического алюминия вводят лигатуру Аl-В, перемешивают в течение 5-10 мин до полного растворения и вывода из раствора примесей Ti, V и получения в необходимом количестве первичной интерметаллидной фазы AlB12, затем вводят в расплав при температуре 980-1000°C алмазографитовый наноразмерный порошок и выдерживают в течение 10-15 мин для протекания синтеза керамических дискретных частиц и их распределения в объеме расплава, после чего проводят модифицирование лигатурой Al-Sr, перемешивание и разливку при температуре 740-750°C.

Изобретение поясняется иллюстрациями. На фиг1 показаны микроструктуры образцов ЛКМ: а) количество дискретных керамических частиц C2Al3B48 - 0,3 мас.%; б) количество дискретных керамических частиц C2Al3B48 - 0,6 мас.%.

Известно, что в техническом алюминии, применяемом в качестве матричного компонента, содержатся примеси Ti и V, которые существенно уменьшают электропроводность композиционного материала. Введение бора в расплав алюминия, в количествах, равных половине весового содержания титана и ванадия, способствует образованию мелкодисперсных соединений TiB2 и VB2, которые нерастворимы в жидком и твердом алюминии и в меньшей степени оказывают влияние на электропроводность [Алюминий: Свойства и физическое металловедение: Справ. Изд. Пер. с англ. / Под ред. Хэтча Дж. Е. - М.; Металлургия, 1989. 422 с.]. Добавление бора в большем количестве, чем необходимо для вывода V и Ti, не рекомендуется из-за образования грубых интерметаллидов AlB2, что отрицательно сказывается на прочности и пластичности материала.

В расплав системы Al-В при температуре 980-1000°C под слой флюса (Na3AlF6) вводят алмазографитовый нанопорошок (НП-АГ) в количестве, необходимом для получения заданной концентрации армирующих дискретных керамических частиц, образовавшихся в результате взаимодействия α-AlB12 и алмазографитового нанопорошка НП-АГ по реакции

4AlB12+2С=C2Al3B48+Аl,

с образованием «алмазо-подобного бора» (C2Al3B48). Образование в системе - Аl-С-В углеродсодержащего борида доказано многими исследователями [Самсонов Г.В. и др. Бориды, М:: Атомиздат, 1975 - 376 с.]. Смесь выдерживают в течение 10-15 мин для протекания синтеза керамических дискретных частиц и их равномерного распределения в объеме расплава. НП-АГ получен методом детонационного синтеза из углерода, содержащегося во взрывчатых веществах, его частицы имеют размер в пределах 2-12 нм, удельная поверхность 200-420 м /г и обладают высокой реакционной способностью.

Далее в расплав вводят порошок лигатуры Al-Sr в количестве, необходимом для получения в расплаве 0,01-0,03 мас.% стронция. За счет модифицирования расплава матрицы стронцием снижается межфазная энергия на границе металл-керамической фазы, и как следствие, измельчаются первично кристаллизующиеся интерметаллиды TiB2 и VB2, образующиеся в результате взаимодействия примесей Ti и V с бором, и происходит дополнительное упрочнение алюминиевой матрицы.

После расплав перемешивают и осуществляют разливку при температуре 740-750°С в металлические формы.

Пример получения ЛКМ на основе алюминия.

Получен ЛКМ вышеизложенным способом, с матрицей из технического алюминия марки А5Е (1060) (в мас.%: Fe-0,26%; Si-0,09%; Cu-0,004%; Mn-0,003%; Mg-0,001%; Cr-0,01%; Ni-0,002%; Zn-0,006%; Ti-0,001%; V-0,002%; Pb-0,001%, всего примесей<0,4%, Al-остальное), армированный дискретными керамическими частицами углеродсодержащей боридной фазы C2Al3B48 (в мас.%: 12,02 Аl; 84,08 B; 3,5 C) в количестве 0,1%, 0,3% и 0,6%. Содержание углерода в порошке составляет 85 мас.%, наноалмазного - не более 15 мас.%, остальные примеси металлов и адсорбированные газы.

Из полученных литых КМ вырезали образцы для исследования электропроводности, механических свойств и микроструктуры. На фиг.1 (а, б) показано равномерное распределение упрочняющих керамических частиц в объеме матрицы. Армирующие частицы имеют размер ≤1-2 мкм, однако в предлагаемом варианте включения керамических фаз более диспергированы в объеме расплава, преобладающий размер частиц менее 1 мкм и, в отличие от прототипа, полностью отсутствуют включения игольчатой морфологии. Высокая степень диспергирования углеродсодержащей боридной фазы C2Al3B48 связана с межфазной и кристаллографической совместимостью со сплавом матрицы, а также применением стронция в качестве модификатора.

Механические свойства и электропроводность полученных КМ в литом состоянии и после прокатки (суммарная деформация 60%) приведены в таблице 1 в сравнении с прототипом.

Видно, что с увеличением содержания керамических частиц в ЛКМ до 0,6 мас.% предел прочности на разрыв (σв) увеличивается более чем на 30%, а после прокатки образцов более чем на 20% по сравнению с деформированным техническим алюминием. В соответствии с прототипом аналогичная прочность может быть достигнута при получении в ЛКМ 15 мас.% карбидной фазы, т.е. керамических частиц нужно вводить в ЛКМ в 25 раз больше, чем в предлагаемом решении. Это объясняется более высокой адгезионной связью частиц C2Al3B48 с матрицей, чем частицы TiC. Дополнительный прирост прочности ЛКМ обусловлен упрочнением матрицы дискретными частицами боридов титана, ванадия и других примесей, образовавшихся в результате их взаимодействия с бором.

Таблица 1
Характеристики ЛКМ
Содержание упрочняющей фазы Предел прочности ств, кгс/мм2 Отностительное удлинение, δ, % Удельное электросопротивление, Ом·мм2
В литом состоянии После прокатки В литом состоянии После прокатки В литом состоянии После прокатки
Прототип
0,1% TiC 5,0 - 39 - - -
15,0% TiC 9,0 10
Исходный алюминий 6,9 14,0 39,6 12,0 0,0301 -
0,1%С2Аl3 В48 8,2 - 25,0 - 0,0285 0,0290
0,3% С2Аl3 В48 8,8 17,2 20,4 7,0 0,0290 0,0293
0,6% С2Аl3 В48 9,0 17,9 20,0 6,1 0,0294 0,0299

Следует отметить, что даже после высокой степени обжатия (более 60%) ЛКМ сохранил достаточную пластичность (6-7%). При содержании дискретных частиц в матрице менее 0,1% прочность ЛКМ недостаточна, а при их содержании более 0,6% повышение прочности ЛКМ незначительно.

Существенным отличием от всех рассмотренных аналогов и прототипа разработанного ЛКМ наряду с повышенной прочностью является высокая электропроводность, соответствующая стандартам для проводников электрического тока. При обработке расплава технического алюминия бором электропроводность повысилась на 7% и осталась достаточно высокой при упрочнении матрицы дискретными керамическими частицами углеродсодержащей боридной фазы C2Al3B48. Известно, что карбид бора является полупроводником, однако высокая электропроводность в системе С-Аl-В связана с декомпенсацией ковалентных связей между атомами бора и углерода из-за наличия атомов алюминия и появлением дополнительных зон проводимости.

Из всего вышесказанного можно сделать вывод, что предложенный ЛКМ обладает высокой эксплуатационной надежностью, а способ его получения отличается экологической безопасностью и простотой исполнения.


ЛИТОЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 211-220 of 234 items.
12.01.2017
№217.015.5b9e

Активатор жидких сред (варианты)

Изобретение относится к горной промышленности, а именно к активации жидких сред, например закладочных смесей, в процессе их транспортирования по трубопроводу к месту закладки. Техническим результатом работы активатора является повышение напора активируемой смеси и повышение интенсивности...
Тип: Изобретение
Номер охранного документа: 0002589880
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d28

Способ получения инертного анода из литого композиционного материала

Изобретение относится к области цветной металлургии, а именно к электролитическому получению алюминия с применением инертных анодов из литых композиционных материалов с коррозионно-стойким покрытием анода. Способ получения инертного анода из литого композиционного материала, одной из...
Тип: Изобретение
Номер охранного документа: 0002590362
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.a176

Способ переработки нефелиновой руды

Изобретение относится к cпособу переработки глиноземсодержащего сырья и может быть использовано в спекательной технологии получения глинозема и содопродуктов из нефелиновой руды. Для сокращения расхода нефелиновой руды в нефелиново-известняково-содовую шихту добавляют золошлаковые отходы в...
Тип: Изобретение
Номер охранного документа: 0002606821
Дата охранного документа: 10.01.2017
20.02.2019
№219.016.c260

Горелочное устройство щелевого типа алюминиевого электролизера с самообжигающимся анодом

Изобретение относится к цветной металлургии, а именно к электролитическому получению алюминия, и предназначено для сжигания анодных газов в горелочных устройствах электролизеров с самообжигающимся анодом. В горелочном устройстве щелевого типа алюминиевого электролизера с самообжигающимся...
Тип: Изобретение
Номер охранного документа: 0002456383
Дата охранного документа: 20.07.2012
20.02.2019
№219.016.c264

Горелочное устройство алюминиевого электролизера с интенсивным смешиванием компонентов

Изобретение относится к цветной металлургии, а именно к электролитическому получению алюминия, и предназначено для сжигания анодных газов в горелочных устройствах электролизеров с самообжигающимся анодом. Горелочное устройство алюминиевого электролизера с интенсивным смешиванием компонентов...
Тип: Изобретение
Номер охранного документа: 0002456380
Дата охранного документа: 20.07.2012
11.03.2019
№219.016.dddf

Рамнопанельная блок-секция сборно-разборного здания

Изобретение относится к области строительства, в частности к рамно-панельной блок-секции сборно-разборного здания. Технический результат заключается в повышении надежности и общей устойчивости. Блок-секция содержит ригели, уложенное на них покрытие, стойки с подкосами, шарнирно соединенные с...
Тип: Изобретение
Номер охранного документа: 0002460853
Дата охранного документа: 10.09.2012
20.03.2019
№219.016.e842

Ультразвуковой способ определения внутренних механических напряжений в конструкционных материалах

Использование: для определения внутренних механических напряжений в конструкционных материалах. Сущность: заключается в том, что пропускают импульсы ультразвуковых колебаний через исследуемый образец, фиксируют прошедшие сигналы с учетом измерения разности скоростей и времен в напряженном...
Тип: Изобретение
Номер охранного документа: 0002455637
Дата охранного документа: 10.07.2012
20.03.2019
№219.016.e9e9

Асфальтобетонная смесь

Изобретение относится к дорожно-строительным материалам, а именно к составам асфальтобетонной смеси на основе нефтяного вязкого битума и заполнителей, которые могут быть использованы при строительстве и ремонте автомобильных дорог, а также аэродромных покрытий. Технический результат: улучшение...
Тип: Изобретение
Номер охранного документа: 0002460703
Дата охранного документа: 10.09.2012
29.03.2019
№219.016.f5da

Способ переработки золотосодержащего сырья для извлечения золота

Изобретение относится к обогащению полезных ископаемых, в частности к переработке золотосодержащих руд. Исходное сырье измельчают и приготавливают из него пульпу. Пульпу обрабатывают с введением реагентов, собирателя и носителя при перемешивании и отделяют полученный золотосодержащий агломерат....
Тип: Изобретение
Номер охранного документа: 0002455373
Дата охранного документа: 10.07.2012
10.04.2019
№219.017.09e2

Способ производства анодной массы

Изобретение относится к способу производства анодной массы для самообжигающихся анодов алюминиевых электролизеров и может быть использовано в производстве обожженных анодов. В способе производства анодной массы, включающем предварительный раздельный нагрев коксовой шихты, коксовой пыли и пека,...
Тип: Изобретение
Номер охранного документа: 0002464360
Дата охранного документа: 20.10.2012
Showing 211-220 of 220 items.
10.02.2016
№216.014.c3fe

Сплав на основе палладия 850 пробы

Изобретение относится к металлургии ювелирных сплавов на основе палладия 850 пробы, применяемых для изготовления ювелирных изделий. Сплав на основе палладия 850 пробы содержит, мас.%: палладий - 85,0-85,5, золото - 2,0-2,5, родий - 0,01-0,5, серебро - остальное. Сплав обладает более низкой по...
Тип: Изобретение
Номер охранного документа: 0002574936
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cde1

Устройство для определения параметров заложения нисходящих наклонных скважин и шпуров

Изобретение относится к горному делу и предназначено для определения пространственного положения нисходящих скважин и шпуров. Предложено устройство для определения параметров заложения нисходящих наклонных скважин и шпуров, содержащее основание с размещенными на нем круговым уровнем и...
Тип: Изобретение
Номер охранного документа: 0002575196
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.e882

Устройство для съемки сечений горных камерных выработок

Изобретение относится к приборам, используемым в горной промышленности для съемки сечения выработанного пространства. Устройство для съемки сечений горных камерных выработок состоит из пластины, лазерных дальномеров, закрепленных на пластине и соединенных между собой и с механизмом...
Тип: Изобретение
Номер охранного документа: 0002575141
Дата охранного документа: 10.02.2016
27.05.2016
№216.015.444a

Токоподвод обожженного анода алюминиевого электролизера

Изобретение относится к токоподводу обожженного анода алюминиевого электролизера. Токоподвод содержит токоподводящую штангу, траверсу, удерживающую токоподводящие ниппели, обеспечивающую распределение электрического тока между ними, при этом токоподводящие ниппели выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002585601
Дата охранного документа: 27.05.2016
12.01.2017
№217.015.5b9e

Активатор жидких сред (варианты)

Изобретение относится к горной промышленности, а именно к активации жидких сред, например закладочных смесей, в процессе их транспортирования по трубопроводу к месту закладки. Техническим результатом работы активатора является повышение напора активируемой смеси и повышение интенсивности...
Тип: Изобретение
Номер охранного документа: 0002589880
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d28

Способ получения инертного анода из литого композиционного материала

Изобретение относится к области цветной металлургии, а именно к электролитическому получению алюминия с применением инертных анодов из литых композиционных материалов с коррозионно-стойким покрытием анода. Способ получения инертного анода из литого композиционного материала, одной из...
Тип: Изобретение
Номер охранного документа: 0002590362
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.a176

Способ переработки нефелиновой руды

Изобретение относится к cпособу переработки глиноземсодержащего сырья и может быть использовано в спекательной технологии получения глинозема и содопродуктов из нефелиновой руды. Для сокращения расхода нефелиновой руды в нефелиново-известняково-содовую шихту добавляют золошлаковые отходы в...
Тип: Изобретение
Номер охранного документа: 0002606821
Дата охранного документа: 10.01.2017
20.02.2019
№219.016.c235

Способ получения сплава на основе алюминия системы al-pb

Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец. В расплавленный в тигле алюминий с добавлением бериллиевой лигатуры вводят магний в количестве не более 3% от массы алюминия, одновременно готовят расплав алюминия с 10-16% свинца...
Тип: Изобретение
Номер охранного документа: 0002454472
Дата охранного документа: 27.06.2012
13.02.2020
№220.018.01ef

Способ изготовления отливок методом электрошлакового литья

Изобретение относится к области металлургии, а именно к электрошлаковому кокильному литью стальных отливок, и может быть использовано в литейном производстве для рафинирования и модифицирования сталей. В процессе электрошлакового переплава расплав обрабатывают шлаком, в состав которого входит...
Тип: Изобретение
Номер охранного документа: 0002714012
Дата охранного документа: 11.02.2020
02.03.2020
№220.018.07ae

Способ получения литого композиционного материала на основе меди

Изобретение относится к области цветной металлургии, в частности литейному производству, а именно к получению литого композиционного материала (ЛКМ) на основе меди для изготовления деталей электротехнического назначения, работающих при повышенных температурах и давлениях. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002715513
Дата охранного документа: 28.02.2020
+ добавить свой РИД