×
20.05.2014
216.012.c691

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНЫХ ИСТИННЫХ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок. Сущность: осуществляют растяжение образца, регистрируют усилие деформирования, минимальный диаметр образца, продольный радиус шейки, по которым затем расчетным путем определяют зависимость истинного напряжения от степени истинных деформаций, определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения путем введения поправочного коэффициента снижения напряжений, строят скорректированную истинную диаграмму деформирования. Определяют максимальную истинную деформацию при разрыве с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва. Определяют показатель деформационного упрочнения расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца, а максимальные истинные напряжения находят с учетом полученного значения показателя деформационного упрочнения, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации, истинных напряжений и деформаций в момент разрыва образца. Технический результат: упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов. 1 ил., 2 табл.
Основные результаты: Способ определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающийся в следующем: осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимость истинного напряжения (S) от степени истинных деформаций (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения S путем введения поправочного коэффициента снижения напряжений К, строят скорректированную истинную диаграмму деформирования, отличающийся тем, что определяют максимальную истинную деформацию при разрыве e с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле где d - исходный диаметр образца;d - минимальный диаметр образца при разрыве;η - параметр жесткости напряженного состояния, определяемый по формуле: R - продольный радиус шейки непосредственно перед разрывом образца;затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле где tgα, tgα - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,а максимальные истинные напряжения S находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации e, истинных напряжений S и деформаций e в момент разрыва образца по формуле

Изобретение относится к области исследования прочностных свойств металлов и касается оценки их деформационно-прочностных характеристик путем приложения к ним растягивающих нагрузок.

После образования шейки при растяжении образца в районе его минимального сечения формируется сложное, неоднородное по поперечному сечению напряженное состояние, что приводит к завышению напряжения и занижению деформации. Для приведения объемного напряженного состояния к линейному (свойственного образцу до образования шейки) вводят поправочный коэффициент, учитывающий жесткость напряженного состояния.

Известен способ определения характеристик прочности и текучести конструкционных материалов, на основании которого изготавливают образец, а затем нагружают его вплоть до разрушения, регистрируют диаграмму в координатах «усилие - деформация», максимальное растягивающее усилие и продольную относительную пластическую деформацию отрыва, по которым судят, в частности, об условных и истинных напряжениях прочности материала (Авторское свидетельство СССР №1747989 А1, кл G01N 3/00. опубл. БИ №26 15.07.92).

Недостатком этого способа является отсутствие учета влияния вида напряженного состояния, связанного с сосредоточенной деформацией в шейке, на характеристики прочности и пластичности, что приводит к искажению результатов по определению характеристик прочности и пластичности.

Известен также способ определения характеристик прочности и текучести конструкционных материалов при различной степени объемной деформации, когда образец нагружают до разрушения, регистрируют диаграмму «усилие - деформация», максимальное растягивающее усилие, продольную относительную пластическую деформацию отрыва и по ним с учетом значений твердости судят об условном и истинном напряжении прочности материала (Авторское свидетельство СССР №1747989 А1, М кл. G01N 3/00 15.07.92). Однако способ не дает информации о характеристиках пластичности и влиянии напряженного состояния в шейке при испытании пластичных металлов, т.е. сопротивление большим пластическим деформациям.

Решением, наиболее близким к предложенному по своей сущности и принятому за прототип, является способ определения максимальных истинных напряжений и деформаций, который состоит в том, что при растяжении образца на стадии шейкообразования регистрируют усилие деформирования F и изменение диаметра d, растягивают образец до деформации, не вызывающей в шейке существенных геометрических изменений, влияющих на напряженное состояние в минимальном сечении шейки, разгружают образец, проводят переточку шейки на конусообразную форму с минимальным углом наклона образующей конуса, что снижает до минимально возможных значений параметр жесткости напряженного состояния в деформируемой зоне, обеспечивающий закрепление деформации в области шейки, измеряют обусловленную усилием деформацию ψ в минимальном сечении шейки, по которой затем расчетным путем определяют зависимость истинного напряжения S от степени истинной деформации е, повторяют аналогичную процедуру испытаний вплоть до разрушения образца. Величины истинных напряжений и деформаций при разрыве принимают за максимальные напряжения и деформации (Патент РФ 2319944 С1, кл. G01N 3/00 19.06.2006).

Недостатком способа является высокая трудоемкость, связанная с необходимостью периодической установки образца в центрах токарного станка и обеспечения соосности его установки относительно геометрии формирующейся шейки, обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующих конуса. При этом эксцентриситет приложения нагрузки или неоднородность свойств вызывают нарушение соосности, не позволяющее выполнить соосную с шейкой обточку, что приводит к искажению экспериментальных результатов.

Таким образом, задача состоит в устранении отмеченных недостатков. Техническим результатом заявленного изобретения является упрощение способа определения максимальных истинных напряжений и деформаций за счет исключения сложных процедур многократной токарной обработки шейки при сохранении достоверности полученных результатов.

Указанный технический результат достигается тем, что в способе определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающемся в том, что осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимости истинного напряжения (S) от степени истинной деформации (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения Se путем введения поправочного коэффициента К, строят скорректированную истинную диаграмму деформирования; определяют максимальную истинную деформацию при разрыве emax с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле

где d0 - исходный диаметр образца;

dk - минимальный диаметр образца при разрыве;

η - параметр жесткости напряженного состояния, определяемый по формуле:

Rk - продольный радиус шейки непосредственно перед разрывом образца;

затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле

где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,

а максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации emax, истинных напряжений Se,k и деформаций ek в момент разрыва образца

Существенным отличием предлагаемого способа является то, что величины максимальных истинных напряжений и максимальных истинных деформаций определяют по изменению параметров шейки с учетом новых взаимосвязей, установленных между максимальной истинной деформацией и параметрами шейки, определяют параметр деформационного упрочнения при степенной аппроксимации истинной диаграммы деформирования на стадии предразрушения, что позволяет полностью исключить сложные процедуры периодической токарной обработки контура шейки, предусмотренные прототипом, при сохранении достоверности полученных результатов.

В результате испытание образца по предложенному способу дает возможность определить максимальные истинные напряжения и деформации, приведенные к линейному напряженному состоянию.

Способ иллюстрируется нижеприведенным чертежом, на котором представлены: 1 - диаграмма истинных напряжений при стандартных испытаниях; 2 - диаграмма, скорректированная по напряжениям на линейное напряженное состояние; 3 - касательная к скорректированной диаграмме растяжения в точке предразрушения; угол αсек, тангенс которого численно равен секущему модулю; угол αкас, тангенс которого численно равен касательному модулю; точка Д на диаграмме деформирования, отмеченная по полученным значениям номинальных истинных напряжений Smax и деформаций emax.

Способ определения максимальных истинных напряжений и деформаций реализуется следующим образом (на примере цилиндрического образца).

Исходные значения характеристик прочности и пластичности материала определяют на основе предварительных испытаний на растяжение образцов, форма и размеры которых предусмотрены ГОСТ 1497-84. Режимы проведения испытаний назначаются согласно упомянутому ГОСТу. В процессе испытания регистрируют усилие деформирования (F), соответствующее ему значение минимального диаметра (d), рассчитывают величину условных напряжений (σ) и деформации (ε) по формулам,

истинного напряжения S и истинной деформации e по формулам:

где A0 и А - начальная и текущая площади поперечного сечения образца

Испытания образца по предлагаемому способу проводят в несколько этапов (ступеней), задавая на каждом из них определенную степень деформации и контролируя ее по изменению минимального диаметра образца. Первоначально образец с исходным диаметром d0 устанавливают в захваты разрывной машины. Производят растяжение образца с записью машинной диаграммы, нагружая его до максимальной нагрузки Fmax, соответствующей σB, а затем разгружают. Измеряют диаметр di поперечного сечения образца и вычисляют истинные напряжение S и относительное удлинение е по формулам (2).

На последующих ступенях нагружения вплоть до разрушения деформация локализуется в области шейки, в минимальном сечении которой определяют диаметр di и продольный радиус шейки Ri. Истинные напряжения S и деформации е также определяют по формулам (2). Строят истинную диаграмму деформирования S □ е. В минимальном сечении шейки образца формируется объемное напряженное состояние, которое, как показано Бриджменом П. (Исследование больших пластических деформаций и разрыва. - М.: Либкор, 2010), а также Давиденковым Н.Н. и Спиридоновой Н.И. (Заводская лаборатория. - 1946 г. - №6. - С.588-592), влияет на величину истинных напряжений, завышая их. Для приведения истинных напряжений к линейному напряженному состоянию, т.е. для исключения влияния сложного напряженного состояния на величину истинных напряжений, вводят корректирующий коэффициент К

находят скорректированное (приведенное к линейному напряженному состоянию) истинное напряжение Se

и строят скорректированную истинную диаграмму деформирования в координатах Se □ е.

Объемное напряженное состояние, формируемое в шейке, также влияет на величину пластических деформаций. Приведение к линейному напряженному состоянию максимальных значений истинных деформаций осуществляется по формуле:

где η - параметр жесткости напряженного состояния при формировании шейки, который определяется по формуле:

Для оценки максимальных истинных напряжений, соответствующих emax, принимается степенная аппроксимация истинной диаграммы деформирования (ГОСТ 25.503-97 «Методы механических испытаний металлов. Метод испытаний на сжатие», £646-00 «Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials»).

Определение показателя деформационного упрочнения n проводится расчетно-графическим методом путем обработки истинной диаграммы деформирования в соответствии с выражением

где tgαкас, tgαсек - соответственно касательный и секущий модули, соответствующие моменту разрыва образца. Величина максимальных истинных напряжений рассчитывается с учетом определенных выше максимальной истинной деформации emax, параметра деформационного упрочнения n, степенной аппроксимации диаграммы деформирования, истинных напряжений Se,k и деформаций ek, соответствующих моменту разрыва образца, по формуле:

Проведена экспериментальная проверка способа.

Испытывались пятикратные цилиндрические образцы из титанового сплава 5В с рабочей длиной 40 мм диаметром 10 мм на разрывной машине УМЭ-ЮТМ с записью диаграммы в координатах «нагрузка F - удлинение Δl». Испытание на растяжение проведено в соответствии с ГОСТ 1497-84. Дополнительно в процессе испытания на стадии шейкообразования проводились периодические разгрузки образца с целью измерения диаметра в минимальном сечении шейки di и продольного радиуса шейки Ri, по результатам которых была построена истинная диаграмма деформирования в координатах «истинные напряжения S - истинные (логарифмические) деформации е» (кривая 1). Затем строится приведенная к линейному напряженному состоянию по напряжениям истинная диаграмма деформирования «истинные напряжения Se - истинные деформации е» (кривая 2). Se определяли по формуле

где

Результаты расчетов приведены в таблице 1.

Моменту разрушения соответствовали истинные напряжения Se,k и истинные деформации ek.

Таблица 1
Параметр Этапы нагружения
1 2 3 4 5 6 7 8 9
Истинная деформация (е, %) 6,5 12,1 15,3 19,7 23.7 28,7 34,1 38,1 46,8
Истинные напряжения (S, МПа) 974 1019 1041 1066 1093 1129 1154 1174 1247
Скорректированные истинные напряжения (Se, МПа) 974 1019 1041 1066 1080 1109 1114 1116 1135
Диаметр шейки (d, мм) 9,70 9,43 9,28 9,08 8,90 8,68 8,45 8,28 7,93
Продольный радиус шейки (R, мм) 90 60 29 18 8

Определение максимальных истинных деформаций по предложенному способу начинаются с установления жесткости напряженного состояния, предшествующего моменту разрыва образца. С этой целью разорванный образец устанавливается в центрах установочного стола микроскопа БМИ-1Ц и измеряются диаметр образца в минимальном сечении dk=7,93 мм и продольный радиус шейки Rk=8 мм. Определяется параметр жесткости напряженного состояния η по формуле

Затем с учетом этого параметра определяется величина максимальных истинных деформаций emax, приведенная к линейному напряженному состоянию:

Для определения максимальных истинных напряжений Smax устанавливается показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования. С этой

целью на диаграмме деформирования проводится касательная (прямая 3) к кривой деформирования в точке, соответствующей моменту разрыва образца (диаграмма 2, точка А). Из точки А опускается перпендикуляр до пересечения с осью абсцисс (точка В). Из начала координат проводится луч, параллельный касательной до пересечения с отрезком АВ (точка C). За показатель деформационного упрочнения принимается отношение отрезка ВС к АС:

Максимальные истинные напряжения Smax находят с учетом полученного значения показателя деформационного упрочнения n, максимальной деформации emax в момент разрыва образца, истинных напряжений Se,k и истинных деформаций ek по формуле

Определенные по предлагаемому способу значения максимальных истинных напряжений и максимальных истинных напряжений отмечены на диаграмме точкой Д: Smax=1157 МПа, emax=56%.

Проведено определение Smax и emax по прототипу. Результаты расчетов приведены в таблице 2.

Таблица 2
Параметр Этапы нагружения
1 2 3 4 5 6 7 8 9 10
Истинная деформация (е, %) 7,73 10,24 18,21 21,85 24,65 28,60 34,32 39,12 47,44 55,68
Истинные напряжения (S, МПа) 976 995 1047 1067 1077 1101 1133 1135 1166 1169
Скорректированные истинные напряжения (Se, МПа) 976 995 1047 1067 1064 1081 1114 1115 1147 1150
Диаметр шейки (d, мм) 9,64 9,52 9,15 8,98 8,86 8,69 8,44 8,24 7,90 7,59
Продольный радиус шейки (R, мм) 90 60 60 60 60 60

Результаты расчетов по прототипу (Smax.прот.=1150 МПа, emax.прот.=55,7%) и заявленному способу (Smax=1157 МПа, emax=56%) практически совпадают.

Данный способ позволил определить максимальные истинные напряжения и максимальные истинные деформации, приведенные к линейному напряженному состоянию, исключив высокую трудоемкость испытания по прототипу, связанную с необходимостью периодической переточки формы образующейся шейки и обеспечения конусообразной формы обработки с расчетом минимального угла наклона образующей конуса.

Способ определения максимальных истинных напряжений и деформаций при разрыве пластичных сплавов, заключающийся в следующем: осуществляют растяжение образца, регистрируют усилие деформирования (F), минимальный диаметр образца (d), продольный радиус шейки (R), по которым затем расчетным путем определяют зависимость истинного напряжения (S) от степени истинных деформаций (е), определяют скорректированные на влияние сложного напряженного состояния в шейке истинные напряжения S путем введения поправочного коэффициента снижения напряжений К, строят скорректированную истинную диаграмму деформирования, отличающийся тем, что определяют максимальную истинную деформацию при разрыве e с учетом влияния жесткости напряженного состояния в шейке образца в момент разрыва по формуле где d - исходный диаметр образца;d - минимальный диаметр образца при разрыве;η - параметр жесткости напряженного состояния, определяемый по формуле: R - продольный радиус шейки непосредственно перед разрывом образца;затем определяют показатель деформационного упрочнения n расчетно-графическим методом по истинной диаграмме деформирования в момент разрыва образца по формуле где tgα, tgα - соответственно касательный и секущий модули, соответствующие моменту разрыва образца для истинной диаграммы деформирования,а максимальные истинные напряжения S находят с учетом полученного значения показателя деформационного упрочнения n, степенной аппроксимации истинной диаграммы деформирования, максимальной деформации e, истинных напряжений S и деформаций e в момент разрыва образца по формуле
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНЫХ ИСТИННЫХ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ
Источник поступления информации: Роспатент

Showing 91-100 of 211 items.
10.03.2015
№216.013.3135

Колесо транспортного средства

Изобретение относится к колесам с пневматическими шинами, предназначенными для колесных тракторов, комбайнов, экскаваторов и других транспортных средств с безрессорными подвесками. Колесо содержит обод и пневматическую шину, в полости которой установлена с кольцевым зазором эластичная оболочка...
Тип: Изобретение
Номер охранного документа: 0002544065
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3b91

Композиция для покрытий

Изобретение относится к композициям на основе жидких углеводородных каучуков для изготовления покрытий спортивных площадок, полов, кровельных и гидроизоляционных покрытий. Композиция включает низкомолекулярный гидроксилсодержащий каучук на основе бутадиена, пластификатор, наполнитель,...
Тип: Изобретение
Номер охранного документа: 0002546737
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c55

Способ работы роторно-поршневого двигателя внутреннего сгорания

Изобретение относится к двигателестроению. Способ работы роторно-поршневого двигателя внутреннего сгорания с эпитрохоидной рабочей камерой и трехгранным ротором осуществляется путем подачи в рабочую камеру свежей топливовоздушной смеси и водорода с заданным коэффициентом избытка воздуха. Подачу...
Тип: Изобретение
Номер охранного документа: 0002546933
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ca9

Композиция для покрытий

Изобретение относится к композициям на основе жидких каучуков, предназначенных для устройства покрытий спортплощадок, полов, кровельных и изоляционных покрытий в строительстве. Композиция включает, мас.ч.: гидроксилсодержащий низкомолекулярный каучук на основе бутадиена 100, полиизоцианат...
Тип: Изобретение
Номер охранного документа: 0002547017
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cab

Композиция для покрытий

Изобретение относится к композициям на основе жидких углеводородных каучуков для изготовления покрытий спортивных площадок, полов, кровельных и гидроизоляционных покрытий. Композиция для покрытий включает низкомолекулярный гидроксилсодержащий каучук на основе бутадиена, пластификатор,...
Тип: Изобретение
Номер охранного документа: 0002547019
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cde

Способ получения полимерного покрытия на поверхности металла

Изобретение относится к получению на поверхности металла полимерных покрытий. Способ включает предварительную обработку поверхности металла для получения на ней гидроксильных групп и последующую ее обработку раствором инициатора полимеризации в среде растворителя в присутствии триэтиламина, и...
Тип: Изобретение
Номер охранного документа: 0002547070
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.48fd

Способ ионообменной очистки сточных вод и технологических растворов от ионов металлов

Изобретение может быть использовано в промышленности на стадии тонкой или дополнительной очистки воды от следов ионов тяжелых металлов, при очистке парового конденсата в котельных и на предприятиях ТЭЦ при создании замкнутого технологического водооборота. Для осуществления способа ионообменной...
Тип: Изобретение
Номер охранного документа: 0002550192
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48ff

Композиция для покрытий

Изобретение относится к композициям на основе жидких углеводородных каучуков для изготовления покрытий спортивных площадок, полов, кровельных и гидроизоляционных покрытий. Композиция для покрытий включает низкомолекулярный гидроксилсодержащий каучук на основе бутадиена, изоцианатный...
Тип: Изобретение
Номер охранного документа: 0002550194
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4900

Композиция для покрытий

Изобретение относится к композициям на основе жидких углеводородных каучуков для изготовления покрытий спортивных площадок, полов, кровельных и гидроизоляционных покрытий. Композиция для покрытий, включающая низкомолекулярный гидроксилсодержащий каучук на основе бутадиена, изоцианатный...
Тип: Изобретение
Номер охранного документа: 0002550195
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4975

Силочувствительный элемент

Изобретение относится к весовой технике, в частности к датчикам силы, для точного измерения небольших усилий в широком диапазоне. Силочувствительный элемент содержит упругое кольцо с тензорезисторами, два жестких кольца меньшего и большего диаметров, радиальные рычаги по своим концам снабжены...
Тип: Изобретение
Номер охранного документа: 0002550312
Дата охранного документа: 10.05.2015
Showing 91-100 of 280 items.
20.06.2014
№216.012.d3a3

Способ получения первичных или вторичный спиртов

Изобретение относится к способу получения первичных или вторичных спиртов общей формулы где R=H: R=CH, R=CH: R=-CHCHCHCH или RR=-(CH)-, -(CH)-, , , которые находят широкое применение в качестве полупродуктов в органическом синтезе, а также как растворители и экстрагенты. Способ заключается...
Тип: Изобретение
Номер охранного документа: 0002519950
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d436

Полимерная композиция для кабельного пластика

Изобретение относится к пластифицированным композициям на основе поливинилхлорида для кабельного пластиката. Полимерная композиция для кабельного пластиката включает поливинилхлорид, диоктилфталат, дифенилолпропан, аэросил, трехосновной сульфат свинца, стабилизатор. Отличается тем, что...
Тип: Изобретение
Номер охранного документа: 0002520097
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d588

Композиция для покрытий

Изобретение относится к полимерным строительным материалам и может быть использовано для изготовления покрытий беговых дорожек, спортивных залов, кровельных и гидроизоляционных, термо- и агрессивостойких покрытий. Композиция для покрытий содержит олигобутадиендиол, минеральный наполнитель,...
Тип: Изобретение
Номер охранного документа: 0002520442
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.db9e

Способ склеивания деталей из стеклопластика внахлест

Изобретение относится к технологии склеивания конструкционных материалов и может использоваться в различных отраслях промышленности для склеивания деталей из стеклопластика между собой. В способе склеивания деталей из стеклопластика внахлест путем нанесения на склеиваемые поверхности клея и...
Тип: Изобретение
Номер охранного документа: 0002522000
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dba1

Клеевая композиция

Изобретение относится к химической промышленности, а именно к получению клеевых композиций на основе синтетических высокомолекулярных соединений, и может быть использовано в различных отраслях промышленности для склеивания стеклопластика между собой. Клеевая композиция включает...
Тип: Изобретение
Номер охранного документа: 0002522003
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e146

Способ получения вторичных аминов

Изобретение относится к способу получения вторичных аминов, в частности к новому способу гидрирования иминов, который позволяет получать вторичные амины общей формулы где R=CH: R=CH, CH, -CHCH, (CH)CHCH(CH)CH-; R=-CHCH: R=CH, R= -CHOCH: R=CH Соединения находят широкое применение в...
Тип: Изобретение
Номер охранного документа: 0002523456
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e14b

Способ получения производных 2-амино-2-цианоадамантана

Изобретение относится к новому способу получения производных 2-амино-2-цианоадамантана указанной общей формулы, которые могут найти применение в качестве полупродуктов в синтезе биологически активных аминокислот, диаминов и гетероциклических соединений. Предлагаемый способ заключается в реакции...
Тип: Изобретение
Номер охранного документа: 0002523461
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e14c

Способ получения производных 2-амино-2-цианоадамантана

Изобретение относится к новому способу получения производных 2-амино-2-цианоадамантана указанной общей формулы, которые могут найти применение в качестве полупродуктов в синтезе биологически активных аминокислот, диаминов и гетероциклических соединений. Предлагаемый способ заключается в реакции...
Тип: Изобретение
Номер охранного документа: 0002523462
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e14d

Способ переаминирования 2-амино-2-цианоадамантана

Изобретение относится к способу переаминирования 2-амино-2-цианоадамантана. Предлагаемый способ заключается во взаимодействии α-аминонитрила с аминами при нагревании. В качестве α-аминонитрила используют 2-амино-2-цианоадамантан, а в качестве аминов - циклогексиламин, 3-аминопропанол и...
Тип: Изобретение
Номер охранного документа: 0002523463
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e29a

Способ получения катализатора для синтеза олиго- и полиэтилентерефталатов и способ получения олиго- и полиэтилентерефталатов

Изобретение относится к способу получения катализатора для получения сложного полиэфира и способу получения олиго- и полиэтилентерефталатов, которые могут быть использованы в дальнейшем для получения волокнистых, пленочных и литьевых композиций, обладающих повышенной гидролитической и...
Тип: Изобретение
Номер охранного документа: 0002523800
Дата охранного документа: 27.07.2014
+ добавить свой РИД