×
20.05.2014
216.012.c325

Результат интеллектуальной деятельности: МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к малоактивируемым жаропрочным радиационно стойким сталям, используемым в ядерной энергетике, в частности, для изготовления деталей активных зон атомных реакторов на быстрых нейтронах и оборудования термоядерных реакторов. Сталь содержит, мас.%: углерод 0,16-0,25, кремний 0,30-1,30, марганец 0,50-2,00, хром 10,00-13,50, вольфрам 0,50-2,50 и/или молибден 0,60-0,90, ванадий 0,20-0,40, никель 0,50-0,80, ниобий 0,20-0,40 и/или тантал 0,01-0,30, бор 0,001-0,008, церий 0,001-0,02 и/или нитрид циркония, алюминий 0,005-0,02, железо и примеси - остальное. Сталь обладает жаропрочностью до температуры 710°C при сохранении низкого уровня наведенной радиоактивности и быстрого ее спада. 3 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии жаропрочных сталей, используемых в ядерной энергетике, в частности, для изготовления деталей активных зон атомных реакторов на быстрых нейтронах и оборудования термоядерных реакторов.

Известна малоактивируемая радиационно стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, ванадий, медь, молибден, кобальт, вольфрам, иттрий, ниобий, алюминий и железо при следующем соотношении компонентов, мас.%: углерод - 0,13-0,18; кремний - 0,20-0,35; марганец - 0,30-0,60; хром - 2,0-3,5; никель - 0,01-0,05; ванадий - 0,10-0,35; медь - 0,01-0,10; молибден - 0,01-0,05; кобальт - 0,01-0,05; вольфрам -1,0-2,0; иттрий - 0,05-0,15; ниобий - 0,01-0,05; алюминий - 0,01-0,10; железо - остальное.

При этом суммарное содержание никеля, кобальта, молибдена, ниобия и меди в известной стали составляет не более 0,2 мас.%, а отношение (V+0,3W)/C изменяется в пределах от 3 до 6. Сталь отличается низким уровнем наведенной активности, но не является жаропрочной при температуре, превышающей 500°C.

(RU №2135623, МКИ 6 C22C 38/52, опубликовано 27.08.1999]

Известна малоактивируемая жаропрочная радиационно стойкая сталь, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, титан, бор, церий и/или иттрий, цирконий, тантал, азот и железо при следующем соотношении, мас.%: углерод - 0,10-0,21; кремний - 0,10-0,80; марганец - 0,50-2,00; хром - 10,00-13,50; вольфрам - 0,80-2,50; ванадий - 0,05-0,40; титан - 0,03-0,30; бор - 0,001-0,008; церий и/или иттрий в сумме - 0,001-0,10; цирконий - 0,05-0,20; тантал - 0,05-0,20; азот - 0,02-0,15; железо - остальное.

При этом отношение суммарного содержания ванадия, титана, циркония и тантала к суммарному содержанию углерода и азота составляет от 2 до 9.

Однако жаропрочность этой стали 650°C недостаточна при температурах в активной зоне реакторов нового поколения 650-710°C.

(RU №2211878, C22C 38/32, опубликовано 10.09.2003)

Задачей изобретения и техническим результатом является создание стали, обладающей жаропрочностью до температуры 710°C при сохранении низкого уровня наведенной радиоактивности и быстрого ее спада.

Технический результат достигается тем, что малоактивируемая жаропрочная радиационно стойкая сталь содержит углерод, кремний, марганец, хром, вольфрам и/или молибден, ванадий, никель, ниобий и/или тантал, бор, церий и/или нитрид циркония, алюминий, железо и неизбежные примеси при следующем соотношении компонентов, мас.%:

Углерод 0,16-0,25
Кремний 0,30-1,30
Марганец 0,50-2,00
Хром 10,0-13,50
Вольфрам и (или) 0,50-2,50
Молибден 0,60-0,90
Ванадий 0,20-0,40
Никель 0,50-0,80
Ниобий и (или) 0,20-0,40
Тантал 0,01-0,30
Бор 0,001-0,008
Церий и (или) 0,001-0,020
Нитрид циркония 0,05-0,20
Алюминий 0,005-0,02
Железо и примеси остальное

Технический результат также достигается, если сталь также содержит, по меньшей мере, один элемент, выбранный из группы, мас.%: титан 0,03-0,30, азот 0,08-0,17, кальций 0,005-0,02, цирконий 0,05-0,20; суммарное содержание примесей легкоплавких металлов - свинца, висмута, олова, сурьмы и мышьяка, не превышает 0,05 мас.%, а содержание неизбежных примесей серы, фосфора и кислорода не превышает, мас.%: сера≤0,008; фосфор≤0,008 и кислород≤0,005.

Легирование титаном, цирконием, азотом и кальцием в составе стали обеспечивает уменьшение активируемости под действием нейтронного облучения и увеличивает скорость спада наведенной активности стали.

Ограничение содержания свинца, висмута, олова, сурьмы и мышьяка увеличивает сопротивление стали низкотемпературному радиационному охрупчиванию (НТРО) в условиях нейтронного облучения.

Высокий уровень жаропрочности обеспечивается за счет образования стабильной мартенситно-ферритной структуры с наличием упрочняющих твердый раствор элементов внедрения (С, N, В) и элементов замещения (W и (или) Mo, V, Nb и/или Ta, Cr, Ni), упрочняющих карбидных (MeC, Ме2С, Me23C6 и др.), нитридных (MeN, Me2N) и карбонитридных (MeCN) фаз, а также частиц фазы Лавеса типа Fe2(W,Mo).

Высокое сопротивление низкотемпературному радиационному охрупчиванию (НТРО) обеспечивается за счет ограниченного содержания в структуре стали δ-феррита, предпочтительного выделения в структуре стали карбидов, нитридов и карбонитридов V, Ti, Nb и/или Ta и Zr по сравнению с аналогичными соединениями хрома, дополнительное ограничение содержания в стали легкоплавких элементов (меди, свинца, висмута, олова, сурьмы и мышьяка), а также серы, фосфора и кислорода в еще большей степени способствует увеличению сопротивления стали НТРО.

Создание малоактивируемой жаропрочной радиационно стойкой стали осуществляют путем введения в структуру стали мелкодисперсных частиц нитрида циркония, равномерно распределенных в объеме стали. При этом сохраняется комплексное легирование стали элементами с быстрым спадом наведенной радиационной активности и создается определенное соотношение между γ°-стабилизирующими элементами (С, N, Mn, Ni) и α-стабилизирующими элементами (Cr, Mo, W, Nb, V, Ta, Ti, Zr, Mo, Nb и др.).

Введение в состав стали мелкодисперсных нитридов циркония позволяет образовать большое количество центров кристаллизации, равномерно распределенных в объеме металла.

В процессе затвердевания стали химически стойкие частицы нитрида циркония, находясь в расплаве, обладают повышенной устойчивостью к диссоциации и будут являться центрами кристаллизации аустенитных зерен, что существенно измельчает первичное аустенитное зерно, увеличивает площадь границ аустенитных зерен, что существенно уменьшает количество карбидов и нитридов ванадия и ниобия, выпадающих по границам аустенитных зерен, и увеличивает их дисперсность. Это обеспечивает увеличение прочностных свойств и одновременно показателей пластичности и вязкости, а также образует выделения, которые увеличивают прочность при повышенных температурах. Нитрид циркония также играет роль дополнительного зародыша фаз, выделяемых при ползучести, благодаря чему образуется более мелкодисперсное распределение фаз и повышается жаропрочность стали.

Содержанием алюминия в количестве 0,005-0,02 мас.% благоприятно изменяет форму неметаллических включений, очищает и упрочняет границы зерен, повышает их пластичность, ударную вязкость и жаропрочность, что приводит к повышению служебных и технологических свойств стали.

Выплавку стали по изобретению проводили в 150-кг индукционной печи, с разливкой металла на слитки (5 плавок), из которых после ковки изготавливались образцы для определения механических свойств и жаропрочности.

В качестве известной стали был выбран металл (сталь ЭП823 - плавка 6) промышленного способа производства, термически обработанный по типовому режиму: нормализация от 1050°C, отпуск при 720°C в течение 3 ч.(Табл.1).

Испытания на растяжение проводили на цилиндрических образцах пятикратной длины с диаметром расчетной части 6 мм в соответствии с ГОСТ 1497-84 при комнатной температуре и по ГОСТ 9651-84 при повышенных температурах (табл.2). В качестве критерия жаропрочности использовались испытания на длительную прочность, которые проводились по ГОСТ 10145-62 (табл.3).

В таблице 2 приведены механические свойства сталей в зависимости от температуры испытаний, полученные после термообработки: нормализация от 1050°C, отпуск при температуре 730°C, охлаждение на воздухе.

Результаты испытаний на длительную прочность (табл.3) показали, что предлагаемая сталь является более жаропрочной при 650 и 710°C, чем сталь-прототип.

Так как основы заявляемой стали и стали-прототипа близки, то полученные ранее данные расчета кинетики спада наведенной активности (мощности дозы - излучения) в сталях после предполагаемого облучения в термоядерном реакторе ДЕМО в течение 10 лет и последующей выдержки до 500 лет свидетельствуют о сохранении заявляемой сталью низкой наведенной активности стали-прототипа (в особенности для составов стали, где вместо молибдена введен вольфрам, а вместо ниобия введен тантал, а также цирконий и титан, эти элементы, являясь малоактивируемыми, не увеличивают наведенную активность заявляемой стали), особенно заметной после выдержки свыше 10 лет. После выдержки в течение 50 лет с заявляемой сталью можно работать без специальной защиты и отправлять ее на переплав для повторного использования.

Таким образом, предложенная сталь может быть использована в ядерной энергетике для изготовления элементов активных зон атомных реакторов, например оболочек твэлов реакторов на быстрых нейтронах типа БН. Использование стали обеспечит высокий народно-хозяйственный эффект за счет повышения свойств жаропрочности и сопротивления низкотемпературному радиационному охрупчиванию.

Предлагаемая сталь прошла широкие лабораторные опробования в ОАО НПО «ЦНИИТМАШ» и рекомендована к промышленному опробованию.

Таблица 1
Химический состав предлагаемой и известной стали
Содержание компонентов, мас.% Номер плавки
1 2 3 4 5 6
Углерод 0,16 0,20 0,25 0,18 0,20 0,16
Кремний 0,30 1,10 1,00 1,20 0,40 1,18
Марганец 0,50 1,20 2,00 2,00 0,80 0,60
Хром 10,00 12,50 13,50 13,00 12,00 10,90
Никель 0,50 0,70 0,50 0,50 0,80 0,80
Молибден 0,60 0,90 - 0,85 0,90 0,76
Вольфрам 0,50 1,80 2,00 1,50 - 0,69
Ниобий 0,20 0,25 - 0.40 0,30 0,33
Тантал - 0,01 0,15 0,10 0,25 -
Ванадий 0,20 0,25 0,10 0,35 0,25 0,30
Бор 0,001 0,003 0,007 0,006 0,008 0,006
Кальций 0,005 0,005 0,01 0,020 0,02 -
Церий 0,001 0,015 0,005 0,020 0,02 0,10
Алюминий 0,005 0,015 0,008 0,008 0,02 0,02
Нитрид циркония - 0,20 0,10 0,015 0,40 -
Титан - 0,035 0,03 - - -
Азот - 0,08 0,15 - 0,17 0,04
Сера 0,008 0,006 0,008 0,008 0,008 0,008
Фосфор 0,008 0,015 0,009 0,008 0,009 0,01
кислород 0,006 0,004 0,005 0,003 0,005 0,006
∑Pb ,Bi, Sb, As, Sn 0,004 0,003 0,004 0,005 0,006 0,006
Железо Остальное Остальное Остальное Остальное Остальное Остальное

Таблица 2
Механические свойства предлагаемой и известной сталей
Состав стали T исп., °C σ0,2, Н/мм2 σ b, Н/мм2 δ, %
1 20 850 950 15
650 500 550 20
710 360 380 25
2 20 870 970 14
650 510 560 20
710 365 395 24
3 20 865 1150 15
650 520 570 20
710 350 375 25
4 20 850 950 15
650 500 550 20
710 360 380 25
5 20 870 970 14
650 510 560 20
710 365 395 24
Известная 20 700 820 16
650 320 420 18
710 280 295 25

Таблица 3
Пределы длительной прочности стали в зависимости от температуры испытания
Состав стали T исп., °C Длительная прочность, Н/мм2, за время 105 ч
1 650 120
710 105
2 650 123
710 104
3 650 135
710 110
4 650 130
710 123
5 650 125
710 105
6 650 108
710 85

Источник поступления информации: Роспатент

Showing 591-600 of 632 items.
27.12.2019
№219.017.f34e

Устройство для локализации аварии в вакуумной камере термоядерного реактора

Изобретение относится к термоядерной технике, а именно к конструкции вакуумной камеры (ВК) и системы локализации аварии (СЛА) в термоядерном реакторе ТЯР или в демонстрационном термоядерном источнике нейтронов (ДЕМО-ТИН). Возможно ее использование в любых установках, где существует возможность...
Тип: Изобретение
Номер охранного документа: 0002710183
Дата охранного документа: 24.12.2019
17.01.2020
№220.017.f654

Устройство предохранения и коммутации взрывателя

Изобретение относится к военной технике, а именно к устройствам предохранения и коммутации взрывателя ракетных, авиационных и зенитных боеприпасов, работающих в условиях интенсивных электромагнитных полей и других экстремальных воздействий. Устройство включает в себя электрический соединитель...
Тип: Изобретение
Номер охранного документа: 0002711149
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f6c7

Устройство для отвода тепла от радиоэлементов

Изобретение относится к электронным приборам, устанавливаемым во внешние электронные устройства в качестве самостоятельных блоков. Технический результат – отвод тепла от тепловыделяющих элементов, расположенных на печатных платах внутри корпуса и не имеющих непосредственного контакта с самим...
Тип: Изобретение
Номер охранного документа: 0002711122
Дата охранного документа: 15.01.2020
06.02.2020
№220.017.ff1c

Устройство для герметизации разъемного соединения кабелей

Изобретение относится к электротехнике и может быть использовано в устройствах для герметизации разъемного соединения кабелей, работающих в агрессивной среде, например для передачи электрического сигнала или в системах контроля параметров ядерного реактора на быстрых нейтронах с тяжелым...
Тип: Изобретение
Номер охранного документа: 0002713509
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff5e

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора

Изобретение относится к устройству для крепления модуля бланкета на вакуумном корпусе термоядерного реактора. Устройство включает опору, содержащую гибкие стержневые элементы, расположенные в виде пучка между двумя фланцами в центральной части фланцев. Одним фланцем опора соединена с модулем...
Тип: Изобретение
Номер охранного документа: 0002713216
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff84

Ядерный реактор на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем

Изобретение относится к ядерному реактору на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем. Реактор содержит активную зону, расположенную в полости центральной части корпуса ядерного реактора, и размещенные в полости периферийной части корпуса по меньшей мере один главный...
Тип: Изобретение
Номер охранного документа: 0002713222
Дата охранного документа: 04.02.2020
20.02.2020
№220.018.0449

Способ радиолокации с изменением несущей частоты от импульса к импульсу

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по...
Тип: Изобретение
Номер охранного документа: 0002714510
Дата охранного документа: 18.02.2020
23.02.2020
№220.018.04da

Способ прецизионных измерений амплитуды гармонических колебаний сверхнизких и звуковых частот при сильной зашумленности сигнала

Изобретение относится к метрологии, в частности к способам измерений амплитуды. Согласно способу выбирают время измерения собственных шумов применяемого регистратора; осуществляют предварительную градуировку регистратора по цене наименьшего разряда квантования; получают среднее квадратическое...
Тип: Изобретение
Номер охранного документа: 0002714861
Дата охранного документа: 19.02.2020
06.03.2020
№220.018.0997

Фазовращатель

Изобретение относится к области радиотехники, в частности к фазовращателям СВЧ-сигнала, и может быть использовано в качестве функционального узла в приемо-передающих трактах радиотехнических систем и базового элемента при создании коммутирующих устройств СВЧ. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002715910
Дата охранного документа: 04.03.2020
09.03.2020
№220.018.0ab4

Коллиматор нейтронов

Заявленное изобретение относится к коллиматору нейтронов. Устройство включает металлический четырехгранный прямоугольный корпус (2), в котором закреплены четыре секции (10) решетки (9), выполненные из тугоплавкого металла. Каждая секция (10) решетки (9) выполнена в форме прямой правильной...
Тип: Изобретение
Номер охранного документа: 0002716142
Дата охранного документа: 06.03.2020
Showing 521-523 of 523 items.
16.05.2023
№223.018.61ac

Экономнолегированная хладостойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким сталям, и может быть использовано при производстве сосудов высокого давления, применяемых для хранения и перевозки сжатых газов в широком диапазоне температур, в том числе эксплуатируемых при температуре...
Тип: Изобретение
Номер охранного документа: 0002746599
Дата охранного документа: 16.04.2021
21.05.2023
№223.018.69aa

Способ испытаний на высокоинтенсивные ударные воздействия приборов и оборудования

Изобретение относится к способам испытаний на высокоинтенсивные ударные воздействия приборов и оборудования, может быть использовано для испытаний приборов и оборудования в авиационной и ракетно-космической технике. Способ заключается в создании ударного воздействия в виде нестационарной...
Тип: Изобретение
Номер охранного документа: 0002794872
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.69ab

Способ испытаний на высокоинтенсивные ударные воздействия приборов и оборудования

Изобретение относится к способам испытаний на высокоинтенсивные ударные воздействия приборов и оборудования, может быть использовано для испытаний приборов и оборудования в авиационной и ракетно-космической технике. Способ заключается в создании ударного воздействия в виде нестационарной...
Тип: Изобретение
Номер охранного документа: 0002794872
Дата охранного документа: 25.04.2023
+ добавить свой РИД