×
27.03.2014
216.012.aedd

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВЫБРОСОВ ОКИСИ УГЛЕРОДА ЭЛЕКТРОДУГОВОЙ ПЕЧИ

Вид РИД

Изобретение

№ охранного документа
0002510480
Дата охранного документа
27.03.2014
Аннотация: Изобретение относится к металлургии. Технический результат - повышение качества регулирования и оптимизация дожигания окиси углерода. Согласно способу регулирования выбросов окиси углерода электродуговой печи определяют высоту вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума и соотносят с содержанием окиси углерода в отходящем газе электродуговой печи. Ввод углерода и/или подачу кислорода в по меньшей мере одной из по меньшей мере трех зон регулируют таким образом, что высота вспененного шлака поддерживалась ниже максимального значения, коррелированного с допустимым предельным значением для окиси углерода в дожигаемом отходящем газе. 2 н. и 18 з.п. ф-лы, 5 ил.

Изобретение относится к способу и устройству для регулирования выбросов окиси углерода электродуговой печи во время ее эксплуатации, которое содержит корпус печи, устройство для определения высоты вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума, по меньшей мере одно первое устройство для регулирования подачи кислорода и по меньшей мере одно второе устройство для регулирования ввода углерода в корпус печи.

При изготовлении стали в электродуговой печи, при котором осуществляется расплавление скрапа, возникает, как правило, вспененный шлак на образуемом расплавленном металле. Это приводит, при подаче углерода в корпус печи, к раскислению расплава и, при подаче кислорода в корпус печи, к обезуглероживанию расплава. Загрузка углерода может при этом осуществляться посредством завалки угля в корпус печи, то есть кускового угля в диапазоне от нескольких миллиметров до нескольких сантиметров в диаметре, вместе со скрапом, или посредством дополнительного вдувания углерода в корпус печи на поверхность расплавленного металла и/или шлака. Часть требуемого углерода часто вводится посредством самого скрапа. Введенный скрап, в итоге, находится в расплавленном состоянии в корпусе печи и, при обстоятельствах, имеющийся кусковой уголь растворяется в ходе процесса расплавления в расплаве. Содержащийся в расплаве растворенный углерод является участником реакции с поданным в корпус печи кислородом, причем образуются окись углерода (CO) и двуокись углерода (CO2), которые приводят к образованию вспененного шлака на поверхности расплава металла.

Так как после расплавления скрапа имеется большое количество углерода, растворенного в расплаве, при вдуве кислорода образуется количество вспененного шлака, которое часто превосходит рациональный уровень. Поэтому обычно контролируется устанавливающаяся высота вспененного шлака в корпусе печи.

В EP 0637634 A1 описан способ для получения расплава металла в электродуговой печи, причем высота вспененного шлака определяется измерением уровня.

Другое устройство для определения высоты вспененного шлака в корпусе электродуговой печи описано в DE 102005034409 B3. Здесь осуществляется определение высоты вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума.

Чтобы регулировать высоту вспененного шлака на основе известных измерительных систем, уже предусматривались устройства для регулирования количества дополнительно вдуваемого углерода и поданного кислорода, которые при чрезмерном вспенивании снижают количество дополнительно вдуваемого углерода до минимума и регулируют величину подачи кислорода.

Было обнаружено, что в отходящем газе электродуговой печи в начале и в течение фазы образования вспененного шлака, спустя определенный промежуток времени, содержится чрезмерно большое количество окиси углерода, которое проявляется в пике или «горбе» окиси углерода и которое не может быть удовлетворительным образом нейтрализовано. Выходящая из установки дожигания (нейтрализации) отходящих газов окись углерода попадает через дымовую трубу в окружающую среду.

Содержание окиси углерода, а также двуокиси углерода в отходящем газе определялось в прошлом частично на основе измерения в канале отходящего газа после электродуговой печи и/или после установки дожигания отходящего газа посредством газовых датчиков. Ввиду преобладающих в месте измерения высоких температур отходящего газа и значительного содержания в нем пыли, подобные измерения подвержены ошибкам, и срок службы применяемых для этого измерительных устройств ограничен. Кроме того, на основе измерения в канале отходящего газа генерация окиси углерода в корпусе печи определяется только с некоторой временной задержкой, следствием чего является запаздывающее регулирующее воздействие. Это приводит к тому, что кратковременно в отходящем газе содержится чрезмерно высокое количество окиси углерода, которое не может быть удовлетворительным образом нейтрализовано. Выходящая из установки дожигания отходящего газа окись углерода вновь попадает через дымовую трубу в окружающую среду.

Поэтому задачей изобретения является создание способа и устройства, с помощью которых обеспечивается возможность выравнивания содержания окиси углерода в отходящем газе электродуговой печи.

Указанная задача для способа регулирования выбросов окиси углерода электродуговой печи, содержащей корпус печи, устройство для определения высоты вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума, по меньшей мере одно первое устройство для регулирования подачи кислорода и по меньшей мере одно второе устройство для регулирования ввода углерода в корпус печи, решается тем, что высота вспененного шлака определяется в каждой из по меньшей мере трех зон и соотносится с содержанием окиси углерода в отходящем газе электродуговой печи, и тем, что ввод углерода и/или подача кислорода в по меньшей мере одной из по меньшей мере трех зон регулируется таким образом, что высота вспененного шлака поддерживается ниже максимального значения.

Поставленная задача решается для устройства для регулирования выбросов окиси углерода электродуговой печи, которая содержит корпус печи и устройство для определения высоты вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума, причем устройство содержит по меньшей мере одно первое устройство для регулирования подачи кислорода в корпус печи, по меньшей мере одно второе устройство для регулирования ввода углерода в корпус печи и по меньшей мере один вычислительный блок для регистрации измеренных значений высоты вспененного шлака в каждой из по меньшей мере трех зон, причем по меньшей мере один вычислительной блок дополнительно выполнено с возможностью соотнесения измеренных значений с содержанием окиси углерода в отходящем газе электродуговой печи, причем измеренные значения сравниваются с максимальным значением для высоты вспененного шлака, и при превышении максимального значения выдается по меньшей мере один регулирующий сигнал для по меньшей мере одного первого устройства и/или по меньшей мере одного второго устройства.

Соответствующий изобретению способ и соответствующее изобретению устройство обеспечивают возможность выравнивания содержания окиси углерода в отходящем газе электродуговой печи. Ввиду того факта, что высота вспененного шлака в электродуговой печи представляет собой меру для количества образованной окиси углерода и двуокиси углерода, открывается возможность того, что измерение высоты вспененного шлака непосредственно используется для регулирования выбросов окиси углерода электродуговой печи. После того как определение высоты вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума может быть выполнено особенно быстро и точно, можно осуществлять регулирование по меньшей мере одного первого и/или по меньшей мере одного второго устройства особенно быстро и без заметной задержки по времени.

На основе достигнутого выравнивания содержания окиси углерода в отходящем газе можно реализовать полное или почти полное дожигание (нейтрализацию) содержащейся в отходящем газе окиси углерода в установке дожигания отходящего газа, которая обычно включена после электродуговой печи. Доля окиси углерода, которая отводится через дымовую трубу в окружающую среду, сокращается до нуля или практически до нуля или по меньшей мере сильно снижается. Нагрузка на окружающую среду вредными веществами существенно снижается.

Кроме того, количество вводимого углерода и/или подаваемого кислорода уменьшается, и соответственно снижаются затраты.

Относительно определения высоты вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума, можно сослаться на документ DE 102005034409 B3, в котором детально описан используемый здесь метод измерений.

Максимальное значение может при этом устанавливаться по времени жестко на некоторое значение, проходить несколько предопределенных ступеней или динамически согласовываться с текущими условиями.

Предпочтительные выполнения соответствующего изобретению способа и соответствующего изобретению устройства описываются ниже.

Высота вспененного шлака далее поддерживается предпочтительно выше минимального значения. Наименьшее количество вспененного шлака гарантирует оптимальный ввод энергии в расплав и снижение теплоизлучения с поверхности расплава. До сих пор, уже при достижении минимального значения для высоты вспененного шлака по меньшей мере одно второе устройство для регулирования ввода углерода в корпус печи регулировалось таким образом, что ввод углерода минимизировался. Поддержание минимального значения, а также максимального значения для высоты вспененного шлака приводит к дальнейшему выравниванию содержания окиси углерода в отходящем газе и к эффективному использованию имеющейся при конкретных обстоятельствах установки дожигания отходящего газа.

По меньшей мере один вычислительный блок устройства, в частности, выполнен с возможностью сравнивать измеренные значения касательно высоты вспененного шлака с минимальным значением для высоты вспененного шлака, и при спадании ниже минимального значения выдавать по меньшей мере один регулирующий сигнал для по меньшей мере одного первого устройства и/или по меньшей мере одного второго устройства.

С каждой из по меньшей мере трех зон корпуса печи сопоставлено по меньшей мере одно первое устройство, и подача кислорода для каждой из по меньшей мере трех зон регулируется отдельно. Так по отношению к локальному чрезмерному вспениванию вспененного шлака можно целенаправленно за счет уменьшения подачи кислорода в этой зоне выполнять противодействующее регулирование. При слишком малой высоте вспененного шлака, напротив, подача кислорода увеличивается и тем самым активизируется пенообразование.

Пригодными для ввода кислорода в электродуговую печь материалами оказались чистый кислород, воздух, водяной пар или комбинации указанного. Также может быть предусмотрена подача окиси железа, предпочтительно в форме железной руды в качестве поставщика кислорода.

Кроме того, с каждой из по меньшей мере трех зон соотнесено по меньшей мере одно второе устройство, и ввод углерода регулируется отдельно для каждой из по меньшей мере трех зон. Так локальному чрезмерному вспениванию вспененного шлака можно целенаправленно противодействовать путем уменьшения ввода углерода в эту зону. При слишком малой высоте вспененного шлака, напротив, можно повышать ввод углерода и тем самым активизировать пенообразование.

В качестве материалов, пригодных для ввода углерода посредством вдувания в корпус печи, зарекомендовали себя уголь, кокс, дерево, карбид железа, непосредственно восстановленное железо, брикетированное при высокой температуре железо, руда, фильтровальная пыль, окалина, высушенный и размельченный шлам, шлакообразующий компонент, такой как известь, известняк, доломит, плавиковый шпат и т.п., причем ввод осуществляется в размельченной форме или в форме порошка.

При этом особенно предпочтительным является использование по меньшей мере одного первого устройства и по меньшей мере одного второго устройства для каждой установленной зоны корпуса печи, чтобы иметь возможность по возможности быстро и динамически оказывать влияние.

Предпочтительным образом посредством экстраполяции осуществляется предсказание характеристики высоты вспененного шлака в каждой из по меньшей мере трех зон и/или усредненным образом по меньшей мере по трем зонам. Из временной характеристики высоты вспененного шлака зоны можно своевременно противодействовать чрезмерному или слишком малому вспениванию и надежно гарантировать выравнивание содержания окиси углерода в отходящем газе электродуговой печи при одновременно оптимальном вводе энергии. Время задержки между обнаружением слишком низкого или слишком высокого уровня вспененного шлака в корпусе печи и регулирующим воздействием существенно снижается и достигается близкое к процессу влияние.

По меньшей мере один вычислительный блок устройства предпочтительным образом выполнен таким образом, чтобы на основе измеренных значений относительно высоты вспененного шлака выполнять экстраполяцию для предсказания характеристики высоты вспененного шлака в каждой из по меньшей мере трех зон и/или усредненным образом по меньшей мере по трем зонам.

В качестве альтернативы или в комбинации определяется предсказание характеристики высоты вспененного шлака в каждой из по меньшей мере трех зон или усредненным образом по меньшей мере по трем зонам и выполняется коррелирование измеренных значений для высоты вспененного шлака с содержанием окиси углерода на основе измеренного содержания двуокиси углерода в отходящем газе.

В качестве альтернативы или в комбинации с этим, предсказание характеристики высоты вспененного шлака в каждой из по меньшей мере трех зон или путем усреднения по меньшей мере по трем зонам и коррелирование измеренных значений для высоты вспененного шлака с содержанием окиси углерода выполняется на основе модели реакции, которая сохранена в по меньшей мере одном вычислительном блоке. При этом модель реакции базируется предпочтительно на теоретических вычислениях для образования отходящего газа, которые сохранены предпочтительно в комбинации с опытными данными для образования отходящего газа для электродуговой печи и/или расплавляемого материала и/или применяемой программы плавки. При создании модели реакции предпочтительно следует учитывать состав расплава, температуру расплава, вырабатываемое количество отходящего газа, место и количество образования вспененного шлака и т.д. В частности, является предпочтительным, если модель реакции постоянно при работе электродуговой печи может оптимизироваться на основе измеренных значений и параметров установки, которые определяются по меньшей мере одним вычислительным блоком предпочтительно автоматически и, при необходимости, могут дополняться обслуживающим персоналом вручную через блок ввода.

Предпочтительным образом используется по меньшей мере один нечеткий регулятор для регулирования по меньшей мере одного первого устройства и/или по меньшей пере одного второго устройства. Нечеткие регуляторы представляют собой системы, которые относятся к классу регуляторов по заданной параметрической поверхности, которые соответствуют теории нечеткой логики. На каждом шаге регулирования выполняются три частичных шага: размывание (подготовка задачи для решения методами нечеткой логики), вывод (умозаключение) и, наконец, восстановление четкости (получение решения задачи методами нечеткой логики). Отдельные входы и выходы обозначаются как лингвистические переменные, к которым принадлежат, соответственно, нечеткие множества.

При этом такой нечеткий регулятор может, например, обращаться к сохраненной в вычислительном блоке вышеупомянутой модели реакции.

Динамическое регулирование может осуществляться на различных фазах процесса расплавления, в частности, на фазе образования вспененного шлака, на основе различных минимальных и/или максимальных значений для высоты вспененного шлака. Фаза вспененного шлака характеризуется временным интервалом после расплавления всех металлических компонентов в полости печи, в которой выполняется восстановление (нейтрализация) и/или обезуглероживание расплава.

В предпочтительном выполнении способа измеряется текущее содержание окиси углерода в отходящем газе и сравнивается с заданным содержанием окиси углерода в отходящем газе. При этом такое заданное содержание окиси углерода характеризует, в особенности, количество окиси углерода в отходящем газе, оптимально дожигаемое в установке дожигания отходящего газа, включенной после электродуговой печи. Для того чтобы это заданное содержание окиси углерода достигалось по возможности непрерывным образом, оказалось благоприятным соответственно динамически изменять или подстраивать максимальное значение. Это обеспечивает возможность оптимального использования производительности установки дожигания отходящего газа.

По меньшей мере один вычислительный блок устройства выполнен с возможностью сравнивать измеренное текущим образом в отходящем газе содержание окиси углерода с заданным содержанием окиси углерода, сохраненным в по меньшей мере одном вычислительном блоке, и динамически изменять максимальное значение для достижения заданного содержания окиси углерода. За счет этого можно корректировать предварительно установленное максимальное значение и динамически согласовывать с текущими или изменяющимися условиями в установке.

Максимальное значение может коррелироваться с допустимым предельным значением для окиси углерода, которое основывается на законодательном регулировании. При этом максимальное значение, в особенности, выбирается таким образом, что отходящий газ, дожигаемый в установке дожигания отходящего газа, включенной после электродуговой печи, выводит в окружающую среду остаточное количество окиси углерода в единицу времени, которое лежит ниже допустимого предельного значения.

В другом предпочтительном выполнении способа, после соотнесения высоты вспененного шлака в каждой из по меньшей мере трех зон с содержанием окиси углерода в отходящем газе электродуговой печи, работа установки дожигания отходящего газа, включенной после электродуговой печи, регулируется на основе соответствующего содержания окиси углерода. При этом на количество кислорода, вдуваемого в установку сжигания отходящего газа, оказывается воздействие, например, через регулирование подаваемого количества от вентиляторов свежего воздуха и/или газовых клапанов, таким образом, что при высоком содержании окиси углерода в отходящем газе из электродуговой печи соответственно увеличенное количество кислорода предоставляется для его дожигания.

По меньшей мере один вычислительный блок устройства предпочтительно выполнен с возможностью того, чтобы, после соотнесения высоты вспененного шлака в каждой из по меньшей мере трех зон с содержанием окиси углерода в отходящем газе электродуговой печи, регулировать работу установки дожигания отходящего газа, включенной после электродуговой печи, на основе соответствующего содержания окиси углерода.

Изобретение поясняется на примере со ссылками на фиг.1-5, на которых показано следующее:

Фиг.1 - иллюстрация протекания способа на конечной фазе процесса расплавления в электродуговой печи;

Фиг.2 -сравнение между протеканием способа на конечной фазе процесса расплавления в электродуговой печи согласно фиг.1 и соответствующим изобретению протеканием способа на конечной фазе;

Фиг.3 - схематичное представление электродуговой печи с соответствующим изобретению устройством;

Фиг.4 - схематичный разрез корпуса электродуговой печи согласно фиг.3;

Фиг.5 - сопоставление содержания окиси углерода в отходящем газе COabg и высоты вспененного шлака HS при соответствующем изобретению регулировании и без регулирования.

Фиг.1 показывает протекание способа на конечной фазе процесса расплавления в электродуговой печи. По оси X, которая указывает время t в секундах от начала процесса расплавления, на оси Y с Hrel нанесены угол наклона а корпуса (металлоприемника) электродуговой печи, высота вспененного шлака HS1, HS2, HS3 для соответствующей из трех зон корпуса печи, а также вводимое количество углерода EC1, ЕС2, EC3 для каждой из трех зон корпуса печи. При этом конец фазы расплавления скрапа и начало фазы вспененного шлака обозначены как A, средняя область фазы вспененного шлака как B, и конечная область фазы вспененного шлака непосредственно перед разливкой расплава как С.

Определение высоты вспененного шлака HS1, HS2, HS3 в трех зонах корпуса 1а электродуговой печи 1 осуществляется посредством измерения корпусного шума. Для каждой зоны корпуса 1а печи имеется первое устройство 50a, 50b, 50c для регулирования подачи кислорода и второе устройство 60a, 60b, 60c для регулирования ввода углерода EC1, ЕС2, EC3 в корпус 1а печи (см. фиг.3).

На фазах A-C для высоты вспененного шлака в корпусе печи нанесены соответствующее максимальное значение WmaxA, WmaxB, WmaxC, а также минимальное значение WminA, WminB, WminC. На фазах А-С до сих пор осуществлялось недостаточное регулирование отходящего газа COabg электродуговой печи 1. Высота вспененного шлака HS1, HS2, HS3 превышает, в частности в фазе А, минимальное значение WminA и кроме того максимальное значение WmaxA и ведет к превышению значения COmax для желательного содержания окиси углерода или заданного содержания окиси углерода в отходящем газе (см. заштрихованную площадь в COabd-характеристике). Но также на фазах B и C может происходить превышение значения COmax для желательного содержания окиси углерода или заданного содержания окиси углерода в отходящем газе. Подключенная к электродуговой печи установка 70 для дожигания отходящего газа не может в достаточной степени дожигать поступающее большое количество окиси углерода, так что нежелательное количество окиси углерода остается в отходящем газе, выводимом в окружающую среду.

Максимальное значение WmaxA, WmaxB, WmaxC может при этом быть коррелированным с допустимым предельным значением для окиси углерода в дожигаемом отходящем газе, который выводится через дымовую трубу в окружающую среду.

Фиг.2 показывает сравнение между протеканием способа согласно фиг.1 и протеканием способа согласно изобретению на конечной фазе процесса расплавления. На трех фазах A, B, C вновь представлены кривые для определенной высоты вспененного шлака HS1, HS2, HS3 согласно фиг.1 и соответствующая характеристика содержания окиси углерода в отходящем газе COabd (см. штрих-пунктирную линию в COabd-характеристике).

Кроме того, теперь изображена кривая, которая показывает высоту вспененного шлака Hopt в среднем при регулировании подачи кислорода и ввода углерода EC1, ЕС2, EC3 согласно изобретению. Максимальные значения WmaxA, WmaxB, WmaxC в фазах A, B, C для высоты вспененного шлака более не превышаются для всех трех зон корпуса 1а печи. За счет этого получается, при характеристике высоты вспененного шлака согласно кривой Hopt, характеристика для содержания окиси углерода в отходящем газе COabd (см. жирную линию на COabd-характеристике), которая повсюду лежит ниже значения COmax. В фазе A и в области перехода между фазами B и C выброс окиси углерода электродуговой печи понижается, значение COmax более не превышается. СО-выброс электродуговой печи теперь находится на равномерном уровне и может обычным образом равномерно дожигаться в подключенной к электродуговой печи установке для дожигания отходящего газа.

На фиг.3 показана электродуговая печь 1 с корпусом 1а печи, в который введено несколько электродов 3a, 3b, 3c, которые через токоподводы связаны с устройством 12 электропитания. Устройство 12 электропитания предпочтительно содержит печной трансформатор. С помощью по меньшей мере одного из трех электродов 3a, 3b, 3c расплавляются загруженные материалы в электродуговой печи 1, такие как скрап и другие добавки. При производстве стали в электродуговой печи образуется шлак или вспененный шлак 15 (см. фиг.4), за счет чего улучшается ввод энергии в расплав посредством электрической дуги 18 (см. фиг.4), которая образуется на по меньшей мере одном электроде 3a, 3b, 3c.

В показанном примере выполнения согласно фиг.3 на токоподводах электродов 3a, 3b, 3c предусмотрены сенсорные и регулирующие устройства 13a, 13b, 13c, с помощью которых ток и/или напряжение или энергия, поданная на электроды 3a, 3b, 3c, могут измеряться и регулироваться. Сенсорные и регулирующие устройства 13а, 13b, 13c воспринимают сигналы тока и/или напряжения предпочтительно с разрешением по времени. Сенсорные и регулирующие устройства 13a, 13b, 13c связаны с вычислительным блоком 8 посредством выполненных как кабель сигнальных линий 14а, 14b, 14с. Другие сигнальные линии 14d, 15e, 14f служат для соединения сенсорных и регулирующих устройств 13a, 13b, 13c с регулирующим устройством 9, которое получает данные регулирования от вычислительного блока 8.

На стенке 2 корпуса 1а печи, то есть на внешнем ограничении корпуса 1а печи размещены датчики 4а, 4b, 4с корпусного шума для измерения колебаний. Датчики 4а, 4b, 4с корпусного шума могут быть непосредственно и/или опосредованно связаны с корпусом 1а печи или со стенкой 2 корпуса 1а печи. Предпочтительным образом, датчики 4а, 4b, 4с корпусного шума размещены на противолежащих электродам 3a, 3b, 3c сторонах стенки 2 корпуса электродуговой печи 1. Датчики 4а, 4b, 4с корпусного шума предпочтительно выполнены как датчики ускорения и позиционированы выше вспененного шлака 15 (см. фиг.4). Датчики 4а, 4b, 4с корпусного шума также связаны с вычислительным блоком 8.

Измеренные значения или сигналы, которые передаются от датчиков 4а, 4b, 4с корпусного шума на вычислительный блок 8, направляются по защищенным линиям 5а, 5b, 5с в оптическое устройство 65 и от него, по меньшей мере частично, направляются в вычислительный блок 8 по световоду 7. Сигнальные линии 5а, 5b, 5с предпочтительно защищены от нагрева, электромагнитных полей, механических нагрузок и/или других нагрузок.

Оптическое устройство 6 служит для усиления и/или преобразования сигналов датчиков 4а, 4b, 4с корпусного шума и размещено предпочтительным образом сравнительно близко от электродуговой печи 1. В оптическом устройстве 6 измеренные значения или сигналы датчиков 4а, 4b, 4с корпусного шума преобразуются в оптические сигналы и по световоду 7 без воздействия помех передаются на сравнительно большие расстояния, например, от 50 до 200 м, к вычислительному блоку 8.

На каждую зону корпуса 1а печи здесь имеется одно первое устройство 50а, 50b, 50с для регулирования подачи кислорода и одно второе устройство 60а, 60b, 60с для регулирования ввода углерода EC1, ЕС2, EC3 (см. фиг.1 и 2) в корпус 1а печи, которые посредством вычислительного блока 8 и устройства 9 регулирования в соответствии с изобретением контролируются таким образом, что максимальное значение WmaxA, WmaxB, WmaxC в фазах A, В, C (см. фиг.2) для высоты вспененного шлака 15 для всех трех зон корпуса 1а печи или в среднем для трех зон не превышается. Кроме того, контроль осуществляется таким образом, что минимальное значение WminA, WminB, WminC в фазах А, В, С (см. фиг.2) для высоты вспененного шлака 15 для всех трех зон корпуса 1а печи или в среднем для трех зон не становится ниже, тем самым гарантируется оптимальный ввод энергии в электродуговую печь 1.

В вычислительном блоке 8 измеренные значения или сигналы датчиков 4а, 4b, 4с корпусного шума и сенсорных и регулирующих устройств 13а, 13b, 13с регистрируются и оцениваются, чтобы определить высоту вспененного шлака 15 (см. фиг.4) в корпусе 1а печи. Определенные датчиками 4а, 4b, 4с корпусного шума измеренные значения или сигналы являются коррелированными с высотой вспененного шлака 15, причем возможно временное разрешение в диапазоне от примерно 1 до 2 секунд. В вычислительном блоке 8 измеренные значения или сигналы, которые указывают высоту вспененного шлака 15 в корпусе 1а печи на каждую зону, соотносятся с соответствующим содержанием окиси углерода в отходящем газе электродуговой печи 1. Соответствующее содержание окиси углерода сравнивается в вычислительном блоке 8 со значением COmax для окиси углерода в отходящем газе, которое соответствует желательному количеству окиси углерода или заданному количеству окиси углерода, и соответствующим образом ввод углерода и/или подача кислорода корректируются в необходимом случае. При обстоятельствах может также осуществляться дополнительное вмешательство для изменения температуры и/или состава расплава.

С помощью первых устройств 50а, 50b, 50с и/или вторых устройств 60а, 60b, 60с, в зависимости от соответствующего содержания окиси углерода, в особенности, ввод углерода и/или подача кислорода регулируются в одной или нескольких зонах корпуса 1а печи таким образом, чтобы высота вспененного шлака в среднем или в соответствующей зоне поддерживалась ниже максимального значения WmaxA, WmaxB, WmaxC, а также превышала минимальное значение WminA, WminB, WminC. Вычислительный блок 8 выдает по меньшей мере один регулирующий сигнал или регулирующее предписание, на основе текущей вычисленной и/или определенной заранее высоты вспененного шлака для каждой зоны в корпусе 1а печи или усредненной по зонам, на регулирующее устройство 9.

Регулирующее устройство 9 регулирует согласно заданию вычислительного блока 8, при обстоятельствах также на основе собственных вычислений, наряду с вводом углерода и/или подачей кислорода, дополнительно подачу других веществ в корпус 1а печи, а также ввод энергии через электроды 3a, 3b, 3c. Регулирующее устройство 9 предпочтительно включает в себя нечеткий регулятор.

К электродуговой печи 1 дополнительно может быть подключена установка 70 для дожигания отходящего газа, которая дожигает отходящий газ, поступающий из электродуговой печи 1 по магистрали 71 отходящего газа, и затем выводит через дымовую трубу 72 в окружающую среду. Подобная установка 70 для дожигания отходящего газа может при этом регулироваться через управляющую линию 73 от регулирующего устройства 9, которая получает соответствующий регулирующий сигнал от вычислительного блока 8.

Фиг.4 показывает в упрощенном представлении один из электродов ЗЬ с электрической дугой 18 в корпусе 1а электродуговой печи 1. На стенке 2 корпуса 1а печи размещен датчик 4b корпусного шума, который соединен с сигнальной линией 5b, с помощью которой сигналы передаются на вычислительный блок 8 (см. фиг.3).

На фиг.4 схематично показаны ванна 16 расплава и вспененный шлак 15 в поперечном сечении корпуса 1а печи. Высота HS вспененного шлака 15 может определяться в вычислительном блоке 8 с помощью передаточной функции корпусного шума в электродуговой печи 1. Передаточная функция характеризует схематично показанный на фиг.4 путь передачи 17 корпусного шума от места возбуждения до места детектирования. Возбуждение корпусного шума осуществляется за счет ввода мощности в электрод 3b в электрической дуге 18. Корпусной шум, то есть обусловленные возбуждением колебания, передается через ванну 16 расплава и/или через вспененный шлак, по меньшей мере частично покрывающий ванну 16 расплава, к стенке 2 корпуса 1а печи. Передача корпусного шума может дополнительно, по меньшей мере частично, осуществляться также через еще не расплавленный кусковой материал в электродуговой печи 1.

Оценка измеренных значений или сигналов в вычислительном блоке 8 может непрерывно оптимизироваться с помощью опытных значений из процесса функционирования электродуговой печи 1. Регистрация и оценка сигналов и определение высоты вспененного шлака осуществляется в оперативном режиме, так что установленная высота вспененного шлака в электродуговой печи 1 может применяться для автоматического регулирования выбросов окиси углерода электродуговой печи 1.

За счет быстрого и непосредственного определения высоты вспененного шлака в корпусе 1а печи обеспечивается возможность улучшенного контроля и регулирования процесса, которое в любой момент времени гарантирует выравнивание содержания окиси углерода в отходящем газе электродуговой печи и, при необходимости, оптимальное дожигание окиси углерода.

Фиг.5 показывает сопоставление содержания окиси углерода в отходящем газе COabd и высоты вспененного шлака HS по времени t в фазе вспененного шлака процесса расплавления в электродуговой печи при соответствующем изобретению регулировании и без регулирования. Без регулирования высоты соответствующего вспененного шлака HS на максимальное значение содержание окиси углерода в отходящем газе COabd превышает значение COmax. При регулировании высоты вспененного шлака HSt таким образом, что максимальное значение не превышается, содержание окиси углерода в отходящем газе COabd не превышает более желательное значение COmax, и содержание окиси углерода в отходящем газе становится выровненным или поддерживается по существу на постоянном уровне.

При этом фиг.1-5 показывают только примеры, которые при измененных программах плавки, электродуговых печах и т.д. могут быть совершенно другими. Специалист на основе знания изобретения, таким образом, в состоянии, при необходимости с проведением некоторых опытов, выполнить регулирование выбросов окиси углерода и для иным образом сконструированных или оснащенных электродуговых печей с использованием определения высоты вспененного шлака в по меньшей мере трех зонах корпуса печи на основе измерения корпусного шума.


СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВЫБРОСОВ ОКИСИ УГЛЕРОДА ЭЛЕКТРОДУГОВОЙ ПЕЧИ
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВЫБРОСОВ ОКИСИ УГЛЕРОДА ЭЛЕКТРОДУГОВОЙ ПЕЧИ
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВЫБРОСОВ ОКИСИ УГЛЕРОДА ЭЛЕКТРОДУГОВОЙ ПЕЧИ
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВЫБРОСОВ ОКИСИ УГЛЕРОДА ЭЛЕКТРОДУГОВОЙ ПЕЧИ
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ВЫБРОСОВ ОКИСИ УГЛЕРОДА ЭЛЕКТРОДУГОВОЙ ПЕЧИ
Источник поступления информации: Роспатент

Showing 361-370 of 1,428 items.
10.05.2015
№216.013.47c4

Способ управления двумя электрически последовательно включенными обратнопроводящими igbt полумостовой схемы

Изобретение относится к способу управления двумя электрически последовательно включенными IGBT (Т1, Т2) полумостовой схемы (2), на которой существует рабочее постоянное напряжение (U), причем эти обратнопроводящие IGBT (Т1, Т2) имеют три состояния переключения. В соответствии с изобретением...
Тип: Изобретение
Номер охранного документа: 0002549879
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.47c6

Способ и устройство для производства двух различных радиоактивных изотопов

Изобретение относится к средствам производства изотопов при помощи ускоренного пучка частиц. В заявленном способе ускоренный пучок частиц (11) направляют на первый исходный материал, содержащийся в мишенном блоке (15), в котором производят первый радиоактивный изотоп (19) посредством первой...
Тип: Изобретение
Номер охранного документа: 0002549881
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4896

Охлаждение сверхпроводящих машин

Изобретение касается устройства для охлаждения сверхпроводящих машин, включающего в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством и которая снабжена испарителем для испарения жидкого охлаждающего средства. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002550089
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48c7

Способ устранения неисправности в линии постоянного тока высокого напряжения, установка для передачи электрического тока по линии постоянного тока высокого напряжения и преобразователь переменного тока

Изобретение относится к области электротехники и может быть использовано в линиях постоянного тока высокого напряжения, к которой через автономный преобразователь подключена сеть переменного тока. Технический результат - повышение надежности устранения неисправности в линии постоянного тока...
Тип: Изобретение
Номер охранного документа: 0002550138
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48d8

Устройство и способ для измерения токов в подшипнике

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат -обеспечение улучшенной оценки токов подшипников. В способе и устройстве для измерения токов в подшипнике реализовано измерение токов подшипников без соприкосновения....
Тип: Изобретение
Номер охранного документа: 0002550155
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4970

Способ оценки для электродуговых разрядов и соответствующий испытательный стенд

Изобретение относится к способу оценки для электродуговых разрядов, которые возникают между внутренним кольцом подшипника и внешним кольцом подшипника для подшипника качения. Способ оценки электродуговых разрядов, которые возникают между внутренним кольцом (8) подшипника и внешним кольцом (9)...
Тип: Изобретение
Номер охранного документа: 0002550307
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49d8

Опорный цилиндр для самоусиливающегося гидравлического тормоза

Группа изобретений относится к области машиностроения, а именно к тормозным системам транспортных средств. Устройство содержит присоединения, одно из которых соединено с механизмом для ввода механической растягивающей или сжимающей нагрузки, другое присоединение выполнено с возможностью...
Тип: Изобретение
Номер охранного документа: 0002550411
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a0a

Сплав, защитный слой и конструктивный элемент

Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких...
Тип: Изобретение
Номер охранного документа: 0002550461
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a10

Адаптивная активная катодная защита

Изобретение относится к области катодной защиты металлических объектов от коррозии и может быть использовано для объектов, находящихся в контакте с электропроводной жидкостью. Устройство содержит антенный электрод для подачи электрического нагрузочного тока в электропроводную жидкость, защитный...
Тип: Изобретение
Номер охранного документа: 0002550467
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a31

Система и способ для заблаговременного распознавания повреждения в подшипнике

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника. В системе и способе заблаговременного распознавания...
Тип: Изобретение
Номер охранного документа: 0002550500
Дата охранного документа: 10.05.2015
Showing 361-370 of 947 items.
20.03.2015
№216.013.3492

Устройство и способ для магнитного разделения текучей среды

Изобретение относится к устройству и способу для магнитного разделения текучей среды, которая содержит подлежащие отделению первые частицы из магнитного или намагничивающегося материала и вторые частицы из немагнитного или ненамагничивающегося материала. Устройство содержит по меньшей мере две...
Тип: Изобретение
Номер охранного документа: 0002544933
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3556

Устройство управления и способ его эксплуатации

Изобретение относится к устройству (10) управления с рычагом (20) управления, в частности, для управления локомотивом или тяговой единицей подвижного состава, и с сенсорным устройством (100) для регистрации положения (V) управления рычага управления. Согласно изобретению предусмотрено, чтобы...
Тип: Изобретение
Номер охранного документа: 0002545138
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.382d

Способ сварки для валов при вертикальной оси вращения

Изобретение относится к области сварочного производства и может быть использовано для изготовления вала (1), в частности, для турбины и/или генератора. Для сварного соединения деталей вала выполняют внутренний кольцевой шов (17) полых цилиндров (3а) деталей вала посредством электродуговой...
Тип: Изобретение
Номер охранного документа: 0002545869
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3830

Способ функционирования чистового прокатного стана с прогнозированием скорости управления

Изобретение относится к металлургии, а именно к прокатному производству. Предложен способ управления чистовым прокатным станом для прокатки полосы с помощью управляющего вычислителя, который на основе определенного для соответствующей точки полосы управляющего значения определяет...
Тип: Изобретение
Номер охранного документа: 0002545872
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.392f

Многополосковый проводник и способ его изготовления

Использование: для сверхпроводящих обмоток магнитно-спиновых томографов, в электродвигателях, в генераторах или в ограничителях тока. Сущность изобретения заключается в том, что многополосковый проводник выполнен с ленточной подложкой и по меньшей мере одним сверхпроводящим слоем, причем...
Тип: Изобретение
Номер охранного документа: 0002546127
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3952

Блок двигателя

Изобретение относится к блоку двигателя, который включает в себя двигатель, теплообменник и инвертор для двигателя. Технический результат заключается в создании компактного блока двигателя с инвертором с эффективным охлаждением. Блок двигателя включает в себя двигатель, теплообменник и инвертор...
Тип: Изобретение
Номер охранного документа: 0002546162
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.397b

Многофазное переключающее устройство

Многофазное переключающее устройство содержит несколько блоков (1, 2, 3) прерывания. Блоки (1, 2, 3) прерывания соответствуют фазе системы передачи электроэнергии и имеют, соответственно, первый и второй, по существу полые цилиндрические, держатели (5, 6) контактных элементов в виде картушей....
Тип: Изобретение
Номер охранного документа: 0002546203
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3a96

Оптический элемент отображения, а также устройство отображения

Предметом изобретения является элемент отображения, а также устройство отображения, в котором вмонтирован элемент отображения. при этом речь может идти, в частности, о дорожных знаках со сменным изображением. Они имеют трубчатый корпус (12), в котором могут быть установлены линзы (22, 25) и...
Тип: Изобретение
Номер охранного документа: 0002546486
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ad8

Приоритизированная передача телеграмм данных

Изобретение относится к способу передачи телеграмм (13а, 13b) данных от передающего устройства (11а) на по меньшей мере одно приемное устройство (11b), при котором с подлежащими передаче телеграммами (13а, 13b) данных ассоциирована ступень приоритета, которая при передаче соответствующей...
Тип: Изобретение
Номер охранного документа: 0002546552
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d85

Способ функционирования процессора в среде реального времени

Изобретение относится к способу функционирования процессора в среде реального времени. Техническим результатом является понижение потребления энергии. В способе процессор после обработки события реального времени переключается из рабочего состояния в состояние покоя. При предстоящем наступлении...
Тип: Изобретение
Номер охранного документа: 0002547237
Дата охранного документа: 10.04.2015
+ добавить свой РИД