×
27.03.2014
216.012.ae67

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии. Горячий водород, образующийся в результате реакции термохимического окисления алюминия водой, пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм. Изобретение позволяет повысить чистоту водорода. 2 ил.
Основные результаты: Способ получения высокочистого водорода, включающий термохимическое окисление алюминия водой, отличающийся тем, что горячий водород, образующийся в результате реакции, пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм.

Изобретение относится к технологии получения высокочистого водорода, и может использоваться в топливных элементах для выработки электрической энергии. Применение способа позволяет продлить срок службы катализатора окисления водорода в топливном элементе путем снижения содержания таких примесей как H2O, CO2 и других.

Известен способ получения водорода с одновременным получением Al(OH)3 и Al2O3 («Способ получения водорода» №2356830 С01В 3/08, приор. 26.06.2007), в котором водород получают взаимодействием H2O и Al, легированного в расплавленном состоянии Bi или Pb, а затем диспергированного, что позволяет повысить эффективность способа без внешнего воздействия.

Недостатком способа является получение водорода, насыщенного парами воды (1,2 кг/м3 при t=25°C), с примесью газообразного CO2 и других, которые отравляют платино-палладиевый катализатор, снижают характеристики топливного элемента, сокращают срок его эксплуатации.

Наиболее близким по технической сущности и заявляемому способу является способ получения водорода путем использования гидрореагирующей смеси (патент на изобретение №2338684 C01B 3/00, B22F 9/20, В82В 1/00, опубл. 20.11.2008). Сущность изобретения заключается в смешении нанопорошка алюминия с водой и последующем добавлении гранулированного гидроксида натрия в суспензию.

Недостатком способа является неравномерность выделения водорода, связанная с протеканием гетерогенной реакции на поверхности гранул гидроксида натрия, что затрудняет управление процессом. Кроме того, недостатком способа является получение водорода также насыщенного парами воды (1,2 кг/м3 при t=25°C) с примесью CO2 и других газов, которые отравляют платино-палладиевый катализатор, снижают характеристики топливного элемента, сокращают срок его эксплуатации.

Основной технической задачей изобретения является получение высокочистого водорода за счет повышенной диффузионной способности водорода при нагревании. Решение основной технической задачи достигается тем, что проводят термохимическое окисление алюминия водой, полученный горячий водород пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм. В результате односторонней диффузии только молекул водорода получают высокочистый водород.

Пример.

Согласно термохимическому уравнению реакции окисления алюминия водой, при взаимодействии алюминия с водой выделяются тепло и молекулярный водород, то есть температура воды будет расти по мере выделения водорода. Следовательно, скорость роста температуры воды пропорциональна величине скорости выделения водорода. В тоже время, скорость тепловыделения на границе раздела оксид-металл, согласно химической реакции будет равна:

где V - скорость реакции; U - объем реагирующего слоя (граничный слой между металлом и оксидно-гидроксидной оболочкой), ΔH - энтальпия химической реакции.

Скорость отвода тепла от реагирующего слоя через оксидно-гидроксидную оболочку пропорциональна разности температур в объеме реагирующего слоя Т и в окружающей среде Т0:

где α - коэффициент теплоотдачи оксидно-гидроксидной оболочки; S - поверхность теплоотвода.

Для повышения температуры в объеме гидрореагирующего слоя необходимо выполнение условия:

,

Рост температуры в промежуточном слое будет продолжаться до достижения максимальной температуры Tmax, т.е. до установления теплового равновесия:

,

Приравнивая правые части уравнений (1) и (2)получаем:

V|ΔН|U=αS(Tmax-T0),

откуда:

.

Анализ полученного выражения показывает, что с повышением скорости и теплового эффекта реакции, а также с увеличением реакционного объема величина Tmax растет, тогда как увеличение коэффициента теплоотдачи α и поверхности теплоотвода снижают Tmax. Температура окружающей среды Т0 входит как аддитивная составляющая в значение Tmax. Оценить максимально достигаемую температуру Tmax можно по фазовому и химическому составу образующихся в объеме реагирующего слоя продуктов реакции.

Экспериментально показано, что с ростом температуры воды температура водорода, образующегося в зоне реакции повышается от 90 до 400°C. Образуется «горячий водород», имеющий высокую проникающую способность.

Для проведения экспериментов была собрана лабораторная установка. На фиг.1 представлена схема установки: 1 - V-образная трубка-манометр; 2 - соединительные шланги; 3 - колбы Вюрца; 4 - термометр; 5 - трубка с пленкой сверхвысокомолекулярного полиэтилена; 6 - делительная воронка.

Был взят нанопорошок алюминия, полученный при помощи электрического взрыва проводника в среде газообразного аргона. Среднеповерхностный диаметр частиц - 120 нм, распределение частиц по диаметру - нормально-логарифмическое в интервале 80-500 нм, насыпная плотность - 0,22 г/см3, содержание адсорбированных газов и воды - до 6% (мас.)

Компоненты гидрореагирующей смеси - порошок «АСД-1» крупностью 80 мкм, нанопорошок алюминия крупностью частиц 70÷120 нм, а также гранулированный гидроксид натрия крупностью 1,0÷2,5 мм в массовых соотношениях 70:26:4, при постоянном перемешивании одновременно добавляют в воду комнатной температуры (21÷23°C).

Молекулы воды и газообразна примесь CO2 и другие примеси имеют гораздо больший диаметр и более низкую температуру, чем молекулярный водород, и поэтому не проникают через мембрану из сверхвысокомолекулярного полиэтилена. Попытки использования полиэтилена высокого давления (ПЭВД) не дали положительных результатов, так как обычный полиэтилен имеет низкую прочность при небольшом нагревании.

В результате реакции алюминия с водой происходит выделение водорода и рост температуры жидкости. На пороге температурного показателя 40°C и давления 1,3 атм. происходит плавное снижение давление, что свидетельствует о прохождении водорода через слой пленки. На фиг.2 представлена зависимость давления от температуры воды во время реакции нанопорошка алюминия с водой. Собранный в колбе водород отбирали в специальную емкость для проведения анализа. Результаты хроматографического анализа полученного исходного водорода и прошедшего водорода через мембрану из сверхвысокомолекулярного полиэтилена показали, что если исходный водород содержал 2,1 г/л (6,3%) H2O, <1×10-5% CO2, то после прохождения через мембрану содержание примесей суммарно составило <1×10-6%. Измерения содержания газов проводилось в научно-аналитическом центре национального исследовательского Томского политехнического университета на масс-спектрометре TRACE DSQ.

Способ получения высокочистого водорода, включающий термохимическое окисление алюминия водой, отличающийся тем, что горячий водород, образующийся в результате реакции, пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм.
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ВОДОРОДА
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ВОДОРОДА
Источник поступления информации: Роспатент

Showing 1-7 of 7 items.
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.889b

Способ получения нанодисперсной шихты для изготовления нитридной керамики

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота...
Тип: Изобретение
Номер охранного документа: 0002500653
Дата охранного документа: 10.12.2013
27.01.2014
№216.012.9beb

Способ нанесения медного покрытия

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей...
Тип: Изобретение
Номер охранного документа: 0002505621
Дата охранного документа: 27.01.2014
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
27.05.2015
№216.013.4e1b

Способ получения нитрида алюминия

Изобретение относится к технологии получения керамических порошков нитрида алюминия, которые могут быть использованы в электронике, электротехнике, в частности, в качестве материала подложек мощных силовых и СВЧ-полупроводниковых приборов. Нитрид алюминия получают путем сжигания...
Тип: Изобретение
Номер охранного документа: 0002551513
Дата охранного документа: 27.05.2015
25.08.2017
№217.015.c703

Способ получения нанодисперсного порошка диоксида титана со структурой рутила

Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов. Способ получения нанодисперсного рутильного диоксида титана включает осаждение его из раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002618879
Дата охранного документа: 11.05.2017
29.12.2017
№217.015.f4e5

Способ активации нанопорошка алюминия

Изобретение относится к активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки, и может быть использовано при приготовлении твердых ракетных топлив, пиротехнических составов, интерметаллидов алюминия и порошковых сплавов. Пассиваируют нанопорошок алюминия...
Тип: Изобретение
Номер охранного документа: 0002637732
Дата охранного документа: 06.12.2017
Showing 121-130 of 234 items.
20.07.2014
№216.012.df77

Линейный индукционный ускоритель с двумя разнополярными импульсами

Изобретение относится к ускорительной технике и может быть использовано для генерации электронных и ионных пучков наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему (1) в виде набора ферромагнитных сердечников,...
Тип: Изобретение
Номер охранного документа: 0002522993
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e14e

Способ изготовления полимерной ионообменной мембраны радиационно-химическим методом

Изобретение относится к способу изготовления полимерной ионообменной мембраны, которую применяют для разделения вещества с помощью электрохимических процессов, таких как электродиализ, электролиз, для получения электричества в гальванических батареях, в частности, для топливного элемента....
Тип: Изобретение
Номер охранного документа: 0002523464
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e1

Способ измерения флюенса быстрых нейтронов полупроводниковым монокристаллическим детектором

РЕФЕРАТ (57) Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей. Способ включает калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, при этом детектор...
Тип: Изобретение
Номер охранного документа: 0002523611
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e203

Устройство для раскатки и отбортовки полых изделий

Изобретение относится к обработке металлов пластической деформацией для получения полых оболочек из листового металла, например заготовок для спутниковых тарелок. На основании установлены подвижный механизм с отбортовочным роликом, оправка с приводом и стойки с установленной на них траверсой....
Тип: Изобретение
Номер охранного документа: 0002523645
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e39f

Способ получения композиционного керамического материала

Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/AlO, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов. Изобретение направлено...
Тип: Изобретение
Номер охранного документа: 0002524061
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e720

Способ получения фенилэтинил производных ароматических соединений

Изобретение относится к способу получения фенилэтинил производных ароматических соединений. Способ характеризуется тем, что включает нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилиодида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение...
Тип: Изобретение
Номер охранного документа: 0002524961
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e724

Способ очистки природных вод

Изобретение относится к области очистки природных вод и может быть использовано для получения питьевой воды. Способ очистки природных вод включает окисление, нейтрализацию и двухстадийную фильтрацию. Окисление с одновременным переводом примесей в растворимое состояние проводят раствором...
Тип: Изобретение
Номер охранного документа: 0002524965
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e86d

Устройство управления и обеспечения живучести двигателя двойного питания

Изобретение относится к области электротехники и может быть использовано в регулируемом трехфазном электроприводе, выполненном на основе надсинхронного вентильного каскада, асинхронного вентильного каскада или двигателя двойного питания. Технический результат: обеспечение живучести...
Тип: Изобретение
Номер охранного документа: 0002525294
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e994

Способ измерения угловой скорости вращения трехфазного асинхронного электродвигателя

Изобретение относится к измерительной технике и может быть использовано в электроприводах для измерения угловой скорости вращения в установившихся и переходных режимах. Способ заключается в измерении мгновенных значений фазных токов i, i и напряжений u, u на фазах А и В, подводимых к статору,...
Тип: Изобретение
Номер охранного документа: 0002525604
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ea88

Система зажигания

Изобретение относится к области транспорта и может быть использовано для выработки импульсов высокого напряжения, образующих искру между электродами свечей зажигания и распределения высоковольтных импульсов по цилиндрам двигателя в необходимой последовательности. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002525848
Дата охранного документа: 20.08.2014
+ добавить свой РИД