×
20.03.2014
216.012.ad28

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ПОВЕРХНОСТИ ЗЕМЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиолокационной техники. Способ заключается в проведении трехэтапных измерений: на первом этапе вычисляют грубое (предварительное) значение дальности до поверхности земли, на втором этапе вычисляют точное (окончательное) значение дальности до поверхности земли, на третьем этапе для подтверждения результатов точного измерения дальности используют скользящее окно, которое представляет собой n селектирующих импульсов, причем n<
Основные результаты: Способ определения дальности до поверхности земли, заключающийся в излучении зондирующего сигнала в направлении поверхности земли, поиске, обнаружении сигнала, отраженного от поверхности земли, и слежении за обнаруженным отраженным сигналом путем дискриминации принятого отраженного сигнала и опорного сигнала для выработки сигнала рассогласования, представляющего собой разность временных положений указанных сигналов, причем сигнал рассогласования воздействует на опорный сигнал, изменяя его временное положение так, чтобы сигнал рассогласования стремился к нулю, измерении временного интервала, равного временной задержке между излученным сигналом и временным положением опорного сигнала, вычислении дальности до поверхности земли по измеренному значению временной задержки, определение дальности до поверхности земли осуществляют за счет проведения трехэтапных измерений, на первом этапе проводят поиск и обнаружение отраженных сигналов путем накопления отраженных сигналов в n селектирующих импульсах, являющихся парциальными интервалами времени одинаковой длительности, на которые разбивают интервал измеряемой дальности при фиксированной минимальной дальности, и превышения в одном из селектирующих импульсов порога накопления, выполняют грубое (предварительное) измерение дальности путем измерения временного интервала между моментом излучения зондирующего сигнала и фронтом селектирующего импульса, в котором произошло обнаружение отраженного сигнала, причем поиск и обнаружение отраженного сигнала проводят одновременно по n селектирующим импульсам, вычисляют грубое (предварительное) значение дальности до поверхности земли по измеренному грубому (предварительному) значению дальности, на втором этапе выставляют опорный сигнал с задержкой, равной длительности временного интервала, соответствующего грубому (предварительному) измерению дальности, обнуляют всю накопленную информацию по n селектирующим импульсам, осуществляют точное слежение за обнаруженным отраженным сигналом путем дискриминации принятого отраженного сигнала и опорного сигнала для выработки сигнала рассогласования и уменьшения его длительности до нуля, измеряют временной интервал, равный временной задержке между излученным сигналом и временным положением опорного сигнала, вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки, на третьем этапе проводят подтверждение результатов точного измерения дальности путем циклического обнаружения отраженного сигнала по n селектирующим импульсам и сравнения с пороговым значением разности результатов измерений грубого (предварительного) и точного (окончательного) измерений дальности, при непревышении разности результатов измерений порогового значения вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки, выдают точную измеренную дальность, при превышении разности результатов измерений порогового значения прекращают точное измерение дальности, выставляют опорный сигнал с задержкой, равной длительности временного интервала, соответствующего последней грубо измеренной дальности, и проводят точное измерение временного интервала, которое используют для вычисления точного значения дальности до поверхности земли, проводят подтверждение результатов точного измерения временной задержки и выдают точное (окончательное) значение дальности, при отсутствии подтверждения результатов точного измерения дальности, выдают вычисленное грубое значение дальности в качестве результата определения дальности до поверхности земли, отличающийся тем, что подтверждение результатов точного измерения дальности на третьем этапе проводят с использованием скользящего окна, состоящего из n селектирующих импульсов, причем n<

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности до поверхности земли, использующих принцип отражения радиоволн.

Известен способ определения дальности D до объекта, заключающийся в излучении зондирующего радиосигнала, приеме отраженного от объекта зондирующего радиосигнала, определении времени tЗАД задержки отраженного сигнала относительно зондирующего сигнала и вычислении дальности D по измеренному значению tЗАД [1]

где c - скорость распространения сигнала.

Для определения дальности в условиях воздействия активных помех излучают зондирующий радиосигнал, принимают отраженный от поверхности земли радиосигнал основным каналом системы приема, принимают сигнал активных помех дополнительным каналом системы приема, компенсируют принятую помеху в основном канале с использованием сигнала дополнительного канала системы приема, измеряют время задержки отраженного сигнала относительно момента излучения зондирующего сигнала и определяют дальность (наклонную) до поверхности земли [1].

Недостатками способа [1] являются:

- уменьшение помехоустойчивости при работе в сложной помеховой обстановке: при наличии активных и пассивных помех;

- отсутствие при определении дальности возможности накопления сигналов для повышения вероятности правильного обнаружения при заданной вероятности ложной тревоги.

Известен способ определения дальности D до поверхности земли [2], выбранный за прототип, использующий принцип отражения радиоволн и заключающийся в измерении временной задержки tЗАД (временного интервала) от зондирующего сигнала до опорного сигнала.

Реализация способа [2] заключается в следующем и осуществляется в три этапа.

На первом этапе излучают зондирующий сигнал длительностью tЗОНД в направлении поверхности земли с периодом ТC.

Измеряют временную задержку, определяющую грубое (предварительное) значение дальности DПРЕДВ. Причем дальность D (расстояние) до поверхности земли вычисляют по измеренному значению tЗАД по (1) путем поиска и обнаружения сигнала, отраженного от поверхности земли, во временном интервале , соответствующем временному интервалу от минимального значения измеряемой дальности DMИH до максимального значения измеряемой дальности DMAKC, разбитому на N парциальных интервалов (N>>1) времени равной длительности Δt. Причем длительность парциального временного интервала Δt устанавливают такой, чтобы она превышала длительность фронта tФ ОТР отраженного сигнала

Поиск сигнала, отраженного от поверхности земли, производят путем накопления отраженных сигналов в N парциальных интервалах времени равной длительности Δt, каждому из которых соответствует свой селектирующий импульс. Отраженный сигнал считается обнаруженным, когда в одном из селектирующих импульсов ΔtN∈NΔt происходит превышение порога накопления k (k>1). Поиск отраженного сигнала производят одновременно по n селектирующим импульсам, что сокращает время обнаружения (поиска) сигнала.

Временную задержку измеряют между моментом излучения зондирующего сигнала и фронтом селектирующего импульса, в котором произошло обнаружение отраженного сигнала UОТР. Значение определяет грубое (предварительное) значение дальности DПРЕДВ по (1).

На втором этапе выставляют опорный сигнал UОПОРН с задержкой tОПОРН, равной длительности временного интервала, соответствующего грубому (предварительному) измерению дальности, обнуляют всю накопленную информацию по n селектирующим импульсам для обеспечения возможности последующих обнаружений.

Осуществляют точное слежение (сопровождение) за обнаруженным сигналом путем дискриминации принятого отраженного UОTP сигнала и опорного UОПОРН сигнала для выработки сигнала Δtp рассогласования, представляющего собой разность временных положений указанных сигналов tОТР и tОПОРН согласно (3)

Сигнал рассогласования воздействует на опорный сигнал, изменяя задержку между сигналами UОTP и U0ПОРН так, чтобы она стремилась к нулю согласно (4)

Измеряют временной интервал, равный временной задержке между излученным сигналом и временным положением опорного сигнала UОПОРН, осуществляют точное (окончательное) измерение дальности DОКОН до поверхности земли по измеренному значению по (1).

На третьем этапе проводят циклическое обнаружение отраженного сигнала UОТР по всем селектирующим импульсам дальности Δt и сравнение с пороговым значением ΔD разности результатов измерений грубого (предварительного) и точного (окончательного) измерений дальности. Пороговое значение ΔD определяется длительностью двух селектирующих импульсов. В результате происходит подтверждение результатов точного измерения дальности путем циклического обнаружения отраженного сигнала UОТР, обеспечивая при точном измерении дальности вероятностные характеристики (вероятности ложной тревоги и правильного обнаружения), получаемые при грубом измерении дальности.

При непревышении разности результатов порогового значения ΔD вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки и выдают результаты измерения - точную измеренную дальность DОКОН.

При превышении разности результатов измерений порогового значения ΔD прекращают точное измерение дальности, выставляют опорный сигнал UОПОРН с задержкой, равной длительности временного интервала, соответствующего последней грубо измеренной дальности до земной поверхности tОПОРН, и проводят точное измерение временного интервала, соответствующего последнему положению селектирующего импульса, в котором произошло обнаружение, которое используют для вычисления точного значения дальности до поверхности земли по (1), проводят подтверждение результатов точного измерения временной задержки и выдают точное (окончательное) значение дальности DОКОН.

При отсутствии подтверждения результатов точного измерения дальности, когда точное измерение дальности затруднено, выдают вычисленное грубое значение дальности в качестве результата определения дальности до поверхности земли.

Недостатком способа [2] является недостаточная помехоустойчивость при работе в сложной помеховой обстановке (при наличии активных и пассивных помех) в силу большой зоны поиска, состоящей из n селектирующих импульсов. Поскольку действие помеховых сигналов в большой зоне поиска может восприниматься как полезный отраженный сигнал.

Техническим результатом предлагаемого изобретения является повышение помехоустойчивости способа определения дальности до поверхности земли при сохранении вероятности правильного обнаружения и проведении трехэтапных измерений дальности за счет сокращения зоны поиска (интервал измеряемых дальностей) на третьем этапе измерений.

Технический результат достигается тем, что способ определения дальности до поверхности земли заключается в излучении зондирующего сигнала в направлении поверхности земли, поиске, обнаружении сигнала, отраженного от поверхности земли, и слежении за обнаруженным отраженным сигналом путем дискриминации принятого отраженного сигнала и опорного сигнала для выработки сигнала рассогласования, представляющего собой разность временных положений указанных сигналов, причем сигнал рассогласования воздействует на опорный сигнал, изменяя его временное положение так, чтобы сигнал рассогласования стремился к нулю, измерении временного интервала, равного временной задержке между излученным сигналом и временным положением опорного сигнала, вычислении дальности до поверхности земли по измеренному значению временной задержки. Определение дальности до поверхности земли осуществляют за счет проведения трехэтапных измерений. На первом этапе проводят поиск и обнаружение отраженных сигналов путем накопления отраженных сигналов в n селектирующих импульсах, являющихся парциальными интервалами времени одинаковой длительности, на которые разбивают интервал измеряемой дальности при фиксированной минимальной дальности, и превышения в одном из селектирующих импульсов порога накопления, выполняют грубое (предварительное) измерение дальности путем измерения временного интервала между моментом излучения зондирующего сигнала и фронтом селектирующего импульса, в котором произошло обнаружение отраженного сигнала, причем поиск и обнаружение отраженного сигнала проводят одновременно по n селектирующим импульсам, вычисляют грубое (предварительное) значение дальности до поверхности земли по измеренному грубому (предварительному) значению дальности. На втором этапе выставляют опорный сигнал с задержкой, равной длительности временного интервала, соответствующего грубому (предварительному) измерению дальности, обнуляют всю накопленную информацию по n селектирующим импульсам, осуществляют точное слежение за обнаруженным отраженным сигналом путем дискриминации принятого отраженного сигнала и опорного сигнала для выработки сигнала рассогласования и уменьшения его длительности до нуля, измеряют временной интервал, равный временной задержке между излученным сигналом и временным положением опорного сигнала, вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки. На третьем этапе проводят подтверждение результатов точного измерения дальности путем циклического обнаружения отраженного сигнала по n селектирующим импульсам и сравнения с пороговым значением разности результатов измерений грубого (предварительного) и точного (окончательного) измерений дальности, при непревышении разности результатов измерений порогового значения вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки, выдают точную измеренную дальность, при превышении разности результатов измерений порогового значения прекращают точное измерение дальности, выставляют опорный сигнал с задержкой, равной длительности временного интервала, соответствующего последней грубо измеренной дальности, и проводят точное измерение временного интервала, которое используют для вычисления точного значения дальности до поверхности земли, проводят подтверждение результатов точного измерения временной задержки и выдают точное (окончательное) значение дальности, при отсутствии подтверждения результатов точного измерения дальности выдают вычисленное грубое значение дальности в качестве результата определения дальности до поверхности земли. Подтверждение результатов точного измерения дальности на третьем этапе проводят с использованием скользящего окна, состоящего из n1 селектирующих импульсов, причем n1<<n и n1 - нечетное число, а временное положение центрального селектирующего импульса из n1 соответствует временному положению опорного сигнала с задержкой, равной длительности временного интервала, соответствующего точному (окончательному) значению временной задержки.

Технический результат достигается тем, что при реализации способа определения дальности на третьем этапе используют скользящее окно, которое представляет собой n1 селектирующих импульсов, для подтверждения результатов точного измерения дальности путем циклического обнаружения отраженного сигнала. Поскольку обнаружение отраженного сигнала проводят только по n1 селектирующим импульсам, то, в силу того, что n1<<n, помехоустойчивость способа существенно возрастает. При этом потери информации об отраженном сигнале не происходит, так как за время измерения отраженный сигнал не выходит за пределы n1 селектирующих импульсов.

Способ определения дальности до поверхности земли осуществляется за счет проведения трехэтапных измерений.

Первый этап

Излучают зондирующий сигнал длительностью tЗОНД в направлении поверхности земли с периодом ТС.

Измеряют временную задержку, определяющую грубое (предварительное) значение дальности DПРЕДВ по (1), путем поиска и обнаружения сигнала, отраженного от поверхности земли, во временном интервале tЗАД, соответствующем временному интервалу от минимального значения измеряемой дальности DMИН до максимального значения измеряемой дальности DMAKC, разбитому на N парциальных интервалов (N>>1) времени равной длительности Δt. Причем длительность парциального временного интервала Δt устанавливают такой, чтобы она превышала длительность фронта tФ ОТР отраженного сигнала (3).

Поиск сигнала, отраженного от поверхности земли, производят путем накопления отраженных сигналов в N парциальных интервалах времени равной длительности Δt, каждому из которых соответствует свой селектирующий импульс. Отраженный сигнал считается обнаруженным, когда в одном из селектирующих импульсов ΔtN∈NΔt происходит превышение порога накопления k (k>1).

Чем больше значение порога накопления k, тем выше вероятность правильного обнаружения при заданной вероятности ложного срабатывания при обнаружении отраженного сигнала. На практике максимальное значение порога накопления k ограничено временем, в течение которого сигнал, отраженный от поверхности земли, находится в пределах одного и того же селектирующего импульса. За счет накопления обнаружение отраженных сигналов происходит с высокой вероятностью правильного обнаружения при заданной вероятности ложной тревоги и может происходить при значениях отношения сигнал-шум, близких к единице.

Поиск отраженного сигнала производят одновременно по n селектирующим импульсам, что сокращает время обнаружения (поиска) сигнала.

Временную задержку измеряют между моментом излучения зондирующего сигнала и фронтом селектирующего импульса, в котором произошло обнаружение отраженного сигнала UОТР. Значение определяет грубое (предварительное) значение дальности DПРЕДВ по (1). Точность измерения временной задержки определяется длительностью селектирующего импульса.

Второй этап

Выставляют опорный сигнал UОПОРН с задержкой UОПОРН, равной длительности временного интервала, соответствующего грубому (предварительному) измерению дальности, обнуляют всю накопленную информацию по n селектирующим импульсам для обеспечения возможности последующих обнаружений.

Осуществляют точное слежение (сопровождение) за обнаруженным сигналом путем дискриминации принятого отраженного UОP сигнала и опорного UОПОРН сигнала для выработки сигнала ΔtP рассогласования, представляющего собой разность временных положений указанных сигналов UОТР и UОПОРН согласно (3). Сигнал рассогласования воздействует на опорный сигнал, изменяя задержку между сигналами UОTP и UОПОРН так, чтобы она стремилась к нулю согласно (4).

Измеряют временной интервал, равный временной задержке между излученным сигналом и временным положением опорного сигнала UОПОР, осуществляют точное (окончательное) измерение дальности DОКОН до поверхности земли по измеренному значению по (1). Точность измерения временной задержки определяется эквивалентной полосой, при которой происходит процесс дискриминации.

Третий этап

Реализацию третьего этапа определения дальности до поверхности земли рассмотрим на примере, когда число селектирующих импульсов n1=7, причем n1<<n, а временное положение центрального (четвертого) селектирующего импульса из n1 соответствует временному положению опорного сигнала с задержкой, равной длительности временного интервала, соответствующего точному (окончательному) значению временной задержки.

Селектирующие импульсы выбраны следующим образом: n1=7, один центральный и по три селектирующих импульса справа и слева от центрального (всего семь импульсов). Наличие трех импульсов относительно центрального вызвано тем, что на третьем этапе проводят циклическое обнаружение отраженного сигнала UОP по n1 селектирующим импульсам дальности Δt и сравнение с пороговым значением ΔD разности результатов измерений грубого (предварительного) и точного (окончательного) измерений дальности, а пороговое значение ΔD определяется длительностью двух селектирующих импульсов.

Важно отметить, что циклическое обнаружение отраженного сигнала производится по n1 селектирующим импульсам. Сужение зоны поиска с n до n1 позволяет (n1<<n) в значительной мере отстроиться от возможных мощных активных и пассивных помеховых сигналов, постановка которых возможна после обнаружения зондирующего радиосигнала, что наиболее вероятно на третьем этапе работы.

Проводят циклическое обнаружение отраженного сигнала UОTP по n1 селектирующим импульсам дальности Δt, причем временное положение центрального селектирующего импульса из n1 соответствует временному положению опорного сигнала с задержкой, равной длительности временного интервала, соответствующего точному (окончательному) значению временной задержки.

Временную задержку измеряют между моментом излучения зондирующего сигнала и фронтом селектирующего импульса из n1, в котором произошло обнаружение отраженного сигнала UОТР. Значение определяет грубое (предварительное) значение дальности DПРЕДВ по (1).

Затем проводят сравнение с пороговым значением ΔD разности результатов измерений грубого (предварительного) и точного (окончательного) измерений дальности.

Пороговое значение ΔD определяется длительностью двух селектирующих импульсов (центрального и одного либо справа от него, либо слева). В результате происходит подтверждение результатов точного измерения дальности путем циклического обнаружения отраженного сигнала UОТР, обеспечивая при точном измерении дальности вероятностные характеристики (вероятности ложной тревоги и правильного обнаружения), получаемые при грубом измерении дальности.

При непревышении разности результатов порогового значения ΔD вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки и выдают результаты измерения - точную измеренную дальность DОКОН.

При превышении разности результатов измерений порогового значения ΔD прекращают точное измерение дальности, выставляют опорный сигнал UОПОРН с задержкой, равной длительности временного интервала, соответствующего последней грубо измеренной дальности до земной поверхности tОПОРН, и проводят точное измерение временного интервала, соответствующего последнему положению селектирующего импульса из n1, в котором произошло обнаружение, (положение селектирующего импульса, в котором произошло обнаружение, в силу ряда причин могло измениться относительно его положения при измерении точной дальности на втором этапе), которое используют для вычисления точного значения дальности до поверхности земли по (1), проводят подтверждение результатов точного измерения временной задержки и выдают точное (окончательное) значение дальности DОКОН.

При отсутствии подтверждения результатов точного измерения дальности, возникающего: при значениях отношения сигнал-шум, близких к единице, при пропаданиях отраженного сигнала и других, когда точное измерение дальности затруднено, выдают вычисленное грубое значение дальности в качестве результата определения дальности до поверхности земли и переходят к поиску сигнала, отраженного от поверхности земли, в N парциальных интервалах времени равной длительности Δt, соответствующих временному интервалу от минимального значения измеряемой дальности DМИН до максимального значения измеряемой дальности DMAKC.

Подтверждение результатов точного измерения дальности происходит путем циклического обнаружения отраженного сигнала UOTP, обеспечивая при точном измерении дальности вероятностные характеристики (вероятности ложной тревоги и правильного обнаружения), получаемые при грубом измерении дальности.

Способ определения дальности до поверхности земли позволяет:

- повысить помехоустойчивость, поскольку удается уменьшить воздействие сигналов активных и пассивных помех на третьем этапе работы за счет уменьшения зоны поиска отраженных сигналов в силу того, что n1<<n;

- накапливать отраженные сигналы при обнаружении;

- обнаруживать за счет накопления отраженные сигналы при значениях отношения сигнал-шум, близких к единице;

- подтверждать результаты точного измерения дальности до поверхности земли результатами грубого измерения дальности до поверхности земли.

При оптимальных условиях работы процессов поиска-обнаружения-слежения-подтверждения вероятность правильного обнаружения отраженного сигнала составляет в данном способе не менее 0,998.

В результате способ определения дальности D до поверхности земли за счет проведения трехэтапных измерений позволяет с высокой помехоустойчивостью измерять дальность, что гарантирует точное отслеживание изменений рельефа поверхности земли.

Рассмотренный способ определения дальности до поверхности земли обладает рядом существенных преимуществ перед прототипом и аналогом.

Источники информации

1 Теоретические основы радиолокации / Под ред. Я.Д.Ширмана. - М.: Сов. радио, 1970. - 560 С. (С.9-14, 365-371, 429-435).

2 Патент №2372626 РФ. МПК G01S 13/08 (2006.01). Способ определения дальности до поверхности земли / Хрусталев А.А., Кольцов Ю.В., Тюрин В.В. // Изобретения. Полезные модели. - 2009. - Опубл. 10.11.2009. - Бюл. №31. (прототип)

Способ определения дальности до поверхности земли, заключающийся в излучении зондирующего сигнала в направлении поверхности земли, поиске, обнаружении сигнала, отраженного от поверхности земли, и слежении за обнаруженным отраженным сигналом путем дискриминации принятого отраженного сигнала и опорного сигнала для выработки сигнала рассогласования, представляющего собой разность временных положений указанных сигналов, причем сигнал рассогласования воздействует на опорный сигнал, изменяя его временное положение так, чтобы сигнал рассогласования стремился к нулю, измерении временного интервала, равного временной задержке между излученным сигналом и временным положением опорного сигнала, вычислении дальности до поверхности земли по измеренному значению временной задержки, определение дальности до поверхности земли осуществляют за счет проведения трехэтапных измерений, на первом этапе проводят поиск и обнаружение отраженных сигналов путем накопления отраженных сигналов в n селектирующих импульсах, являющихся парциальными интервалами времени одинаковой длительности, на которые разбивают интервал измеряемой дальности при фиксированной минимальной дальности, и превышения в одном из селектирующих импульсов порога накопления, выполняют грубое (предварительное) измерение дальности путем измерения временного интервала между моментом излучения зондирующего сигнала и фронтом селектирующего импульса, в котором произошло обнаружение отраженного сигнала, причем поиск и обнаружение отраженного сигнала проводят одновременно по n селектирующим импульсам, вычисляют грубое (предварительное) значение дальности до поверхности земли по измеренному грубому (предварительному) значению дальности, на втором этапе выставляют опорный сигнал с задержкой, равной длительности временного интервала, соответствующего грубому (предварительному) измерению дальности, обнуляют всю накопленную информацию по n селектирующим импульсам, осуществляют точное слежение за обнаруженным отраженным сигналом путем дискриминации принятого отраженного сигнала и опорного сигнала для выработки сигнала рассогласования и уменьшения его длительности до нуля, измеряют временной интервал, равный временной задержке между излученным сигналом и временным положением опорного сигнала, вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки, на третьем этапе проводят подтверждение результатов точного измерения дальности путем циклического обнаружения отраженного сигнала по n селектирующим импульсам и сравнения с пороговым значением разности результатов измерений грубого (предварительного) и точного (окончательного) измерений дальности, при непревышении разности результатов измерений порогового значения вычисляют точное (окончательное) значение дальности до поверхности земли по измеренному точному (окончательному) значению временной задержки, выдают точную измеренную дальность, при превышении разности результатов измерений порогового значения прекращают точное измерение дальности, выставляют опорный сигнал с задержкой, равной длительности временного интервала, соответствующего последней грубо измеренной дальности, и проводят точное измерение временного интервала, которое используют для вычисления точного значения дальности до поверхности земли, проводят подтверждение результатов точного измерения временной задержки и выдают точное (окончательное) значение дальности, при отсутствии подтверждения результатов точного измерения дальности, выдают вычисленное грубое значение дальности в качестве результата определения дальности до поверхности земли, отличающийся тем, что подтверждение результатов точного измерения дальности на третьем этапе проводят с использованием скользящего окна, состоящего из n селектирующих импульсов, причем n<
Источник поступления информации: Роспатент

Showing 161-170 of 580 items.
10.01.2015
№216.013.1d18

Пиротехнический состав для генерации азота

Изобретение относится к пиротехническим составам и может быть использовано для получения газообразного азота в источниках давления. Предложен пиротехнический состав для получения азота, содержащий азид натрия, фторид алюминия (III) и порошок фторопласта при соотношении компонентов (мас.%)...
Тип: Изобретение
Номер охранного документа: 0002538876
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d41

Способ подбора профиля высоковольтных кольцевых экранов

Способ подбора профиля высоковольтных кольцевых экранов относится к высоковольтной импульсной технике и может быть использован в генераторах высоковольтных импульсов и ускорителях заряженных частиц при подборе профиля закругления острых торцевых кромок проводников сильноточных формирующих...
Тип: Изобретение
Номер охранного документа: 0002538917
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1f37

Имитатор преграды

Изобретение относится к испытательной технике и может быть использовано для проведения ударных испытаний. Имитатор преграды содержит металлический ударник со скошенной под заданным углом к направлению его движения плоскостью и обтюратор из полимерного материала. Ударник выполнен в форме плиты...
Тип: Изобретение
Номер охранного документа: 0002539432
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.2056

Феррозондовый магнитометр и способ измерения компонент индукции магнитного поля при помощи векторной компенсации

Изобретение относится к измерительной технике, представляет собой феррозондовый магнитометр и способ измерения компонент индукции магнитного поля при помощи векторной компенсации и может использоваться в точных измерениях компонент индукции магнитного поля. При реализации способа одновременно...
Тип: Изобретение
Номер охранного документа: 0002539726
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.26ae

Электрическая взрывная сеть

Изобретение относится к области взрывных работ, в частности к электрическим устройствам, предназначенным для одновременного инициирования нескольких зарядов взрывчатого вещества или нескольких точек одного заряда. Может быть использовано в различных областях взрывной техники. Электрическая...
Тип: Изобретение
Номер охранного документа: 0002541355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c2

Резонатор силочувствительный

Изобретение относится к области измерения механических параметров. Резонатор силочувствительный с изгибной формой колебаний выполнен в виде двух идентичных параллельно расположенных между собой стержней, одни концы которых жестко соединены между собой и с первым элементом приложения измеряемой...
Тип: Изобретение
Номер охранного документа: 0002541375
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2700

Способ измерения асимметрии распада поляризованных пучков

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц,...
Тип: Изобретение
Номер охранного документа: 0002541437
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.274e

Стабилизированный преобразователь постоянного напряжения

Изобретение относится к области электротехники. Технический результат заключается в повышении стабильности выходного напряжения на нагрузке в более широком диапазоне входных напряжений и температур окружающей среды, а также обеспечении защиты от тока короткого замыкания в нагрузке как полевого...
Тип: Изобретение
Номер охранного документа: 0002541519
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.28c9

Устройство для охранной сигнализации

Изобретение относится к сигнальным устройствам, работающим в условиях вибрационных, линейных и ударных воздействий, и может быть использовано для охраны помещений и объектов различного назначения. Технический результат: повышение надежности работы устройства в условиях вибрационных, линейных и...
Тип: Изобретение
Номер охранного документа: 0002541898
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a6c

Способ получения порошка диоксида урана

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения порошка диоксида урана заключается в нагревании смеси раствора уранилнитрата и...
Тип: Изобретение
Номер охранного документа: 0002542317
Дата охранного документа: 20.02.2015
Showing 161-170 of 424 items.
10.01.2015
№216.013.1d18

Пиротехнический состав для генерации азота

Изобретение относится к пиротехническим составам и может быть использовано для получения газообразного азота в источниках давления. Предложен пиротехнический состав для получения азота, содержащий азид натрия, фторид алюминия (III) и порошок фторопласта при соотношении компонентов (мас.%)...
Тип: Изобретение
Номер охранного документа: 0002538876
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d41

Способ подбора профиля высоковольтных кольцевых экранов

Способ подбора профиля высоковольтных кольцевых экранов относится к высоковольтной импульсной технике и может быть использован в генераторах высоковольтных импульсов и ускорителях заряженных частиц при подборе профиля закругления острых торцевых кромок проводников сильноточных формирующих...
Тип: Изобретение
Номер охранного документа: 0002538917
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1f37

Имитатор преграды

Изобретение относится к испытательной технике и может быть использовано для проведения ударных испытаний. Имитатор преграды содержит металлический ударник со скошенной под заданным углом к направлению его движения плоскостью и обтюратор из полимерного материала. Ударник выполнен в форме плиты...
Тип: Изобретение
Номер охранного документа: 0002539432
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.2056

Феррозондовый магнитометр и способ измерения компонент индукции магнитного поля при помощи векторной компенсации

Изобретение относится к измерительной технике, представляет собой феррозондовый магнитометр и способ измерения компонент индукции магнитного поля при помощи векторной компенсации и может использоваться в точных измерениях компонент индукции магнитного поля. При реализации способа одновременно...
Тип: Изобретение
Номер охранного документа: 0002539726
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.26ae

Электрическая взрывная сеть

Изобретение относится к области взрывных работ, в частности к электрическим устройствам, предназначенным для одновременного инициирования нескольких зарядов взрывчатого вещества или нескольких точек одного заряда. Может быть использовано в различных областях взрывной техники. Электрическая...
Тип: Изобретение
Номер охранного документа: 0002541355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c2

Резонатор силочувствительный

Изобретение относится к области измерения механических параметров. Резонатор силочувствительный с изгибной формой колебаний выполнен в виде двух идентичных параллельно расположенных между собой стержней, одни концы которых жестко соединены между собой и с первым элементом приложения измеряемой...
Тип: Изобретение
Номер охранного документа: 0002541375
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2700

Способ измерения асимметрии распада поляризованных пучков

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц,...
Тип: Изобретение
Номер охранного документа: 0002541437
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.274e

Стабилизированный преобразователь постоянного напряжения

Изобретение относится к области электротехники. Технический результат заключается в повышении стабильности выходного напряжения на нагрузке в более широком диапазоне входных напряжений и температур окружающей среды, а также обеспечении защиты от тока короткого замыкания в нагрузке как полевого...
Тип: Изобретение
Номер охранного документа: 0002541519
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.28c9

Устройство для охранной сигнализации

Изобретение относится к сигнальным устройствам, работающим в условиях вибрационных, линейных и ударных воздействий, и может быть использовано для охраны помещений и объектов различного назначения. Технический результат: повышение надежности работы устройства в условиях вибрационных, линейных и...
Тип: Изобретение
Номер охранного документа: 0002541898
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a6c

Способ получения порошка диоксида урана

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения порошка диоксида урана заключается в нагревании смеси раствора уранилнитрата и...
Тип: Изобретение
Номер охранного документа: 0002542317
Дата охранного документа: 20.02.2015
+ добавить свой РИД