×
10.03.2014
216.012.a8ee

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНЫХ СЛОЖНОПРОФИЛЬНЫХ НАНОСТРУКТУРНЫХ КОНСТРУКЦИОННЫХ И ФУНКЦИОНАЛЬНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности к получению объемных наноструктурных материалов. Пористую металломатричную основу формируют путем спекания в состоянии свободной засыпки полиморфных порошковых материалов дисперсностью 1-10 мкм. В основу, нагретую до температуры 0,4 от температуры плавления ее материала, вводят нанопорошок дисперсностью 10-10 мкм. После чего осуществляют прессование при нагружении, соответствующем состоянию сверхпластичности. Обеспечивается получение материала с высоким уровнем физико-механических и технологических свойств, повышение эффективности процесса компактирования и расширение его технологических возможностей. 2 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к области компактирования и получения объемных наноструктурных материалов. Целью изобретения является повышение эффективности процесса компактирования наноструктурных материалов, расширение его технологических возможностей при изготовлении объемных сложнопрофильных изделий, обладающих высоким уровнем физико-механических и технологических свойств.

Известен способ получения объемных наноструктурных материалов, заключающийся в использовании контролируемой кристаллизации аморфных материалов. [Балоян Б.М., Колмаков А.Г., Алымов М.И. Наноматериалы. Классификация, особенности свойств, применение и технологии получения. Учебное пособие.: М. - 2007, - 125 с] Переход материала из аморфного в микро- и нанокристаллическое состояние происходит в процессах спекания аморфных порошков, а также при горячем или теплом прессовании или экструзии. Размер кристаллов, возникающих внутри аморфного материала, регулируется температурой процесса. Недостаток способа состоит в том, что получение нанокристаллического состояния здесь менее вероятно, чем микрокристаллического.

Известен способ компактирования ультрадисперсных порошков [Анциферов В.Н., Бездудный Ф.Ф., Белянчиков Л.Н. и др. Новые материалы. Колл. авторов. Под науч. ред. Карабасова Ю.С. - М.: МИСИС. - 2002. - 736 с] за счет испарения и конденсации атомов для образования нанокластеров частиц, осаждаемых на холодную поверхность вращающегося цилиндра в атмосфере разреженного инертного газа, обычно гелия. При испарении и конденсации металлы с более высокой температурой плавления образуют обычно частицы меньшего размера. Осажденный конденсат специальным скребком снимается с поверхности цилиндра и собирается в коллектор. После откачки инертного газа в вакууме проводится

предварительное (под давлением примерно 1 ГПа) и окончательное (под давлением до 10 ГПа) прессование нанопорошка. В результате получают образцы диаметром 5…15 мм и толщиной 0,2…0,3 мм с плотностью 70…95% от теоретической плотности соответствующего материала (до 95% для нанометаллов и до 85% для нанокерамики). Недостаток способа обусловлен существенными технологическими ограничениями при получении структур высокой плотности, поскольку нанокристаллические порошки имеют крайне низкую прессуемость, при этом крайне мала номенклатура изделий по типоразмерам.

Наиболее близок к предлагаемому по технической сущности и достигаемому эффекту является способ получения объемных наноструктурных материалов [Алымов М.И., Зелинский В.А. Методы получения и физико-механические свойства объемных нанокристаллических материалов, - М.: МИФИ. - 2005. - 52 с], основанный на использовании схемы одноосного прессования (статическое, динамическое и вибрационное), при котором используется формование нанопорошка с последующим спеканием.

Недостатком данного способа являются существенные ограничения по типоразмерам заготовок и получаемых изделий, а также высокий уровень остаточной пористости вследствие крайне низкой способности нанопорошков к уплотнению и образованию беспористых структур.

Объемные материалы с наноструктурой независимо от способа получения имеют повышенный уровень прочности, при этом, пластичность нанокристаллических металлов и сплавов, как правило, мала и составляет 0,5…4% [Сироткин О.С. Моделирование структуры и свойств металлических и неметаллических материалов в рамках парадигмы их многоуровневой организации / Прогрессивные технологии обработки материалов: Научные труды Всероссийского Совещания материаловедов России // под ред. В.Н. Кокорина. - Ульяновск.: УлГТУ, 2006. С.7-9.], что существенно ограничивает деформационные способности наноструктур и, как следствие, технологические возможности при изготовлении изделий сложной пространственной формы.

Технический результат: повышение эффективности процесса компактирования наноструктурных материалов, расширение его технологических возможностей при изготовлении объемных сложнопрофильных изделий, обладающих высоким уровнем физико-механических и технологических свойств.

Сущность предлагаемого изобретения заключается в том, что в пористую металломатричную основу, которая может иметь переменную пористость с заданным градиентом, вводят нанопорошок в пастообразном состоянии или в сухом виде, а прессование образованной наноструктурированной механической смеси производят при обеспечении режима нагружения, соответствующем состоянию сверхпластичности. Эффект сверхпластичности материалов заключается в аномально больших пластических характеристиках деформируемых металлов (относительное удлинение 8>1000%) и малых величин сопротивления деформированию. Признаки свойств пластичности проявляются в определенных условиях: структурное состояние деформированного металла; температура; скорость деформации.

Особенность способа заключается в следующем: используют механическую смесь тонкодисперсных порошковых полиморфных материалов крупностью 1…10 мкм; в состоянии свободной засыпки производят спекание полученной смеси (металломатричной основы), при этом образуется пористое изделие типа «фильтр». Затем производят внедрение субмелкого наноматериала (10-4…10-6 мкм) в пастообразном состоянии или в сухом виде с использованием мундштучного прессования, шилкерного литья или пневмовдувания в пористую матрицу, имеющую остаточную температуру, равную 0,4 температуры плавления металломатричной основы, что соответствует температурным режимам эффекта сверхпластичности. При этом создаваемая структура будет состоять из: а) ячеистой (заполняемой) мозаики металла размером зерна 1…10 мкм; б) заполняющей нанофазы с размером частиц (10-4…10-6 мкм). Полученную наноструктурированную механическую смесь (НСМС) подвергают нагружению по режимам, соответствующим созданию эффекта сверхпластичности.

Матрица металла-основы в процессе пластического формообразования увлекает (транспортирует) заполняющую нанофазу, не деформируя ее и, тем самым, исключая упрочнение дисперсных частиц. Приведенное выше условие позволит регламентировать завершающую операцию компактирования наночастиц в монолитный металл, исключая исчезновение их фазовых границ [Шоршоров, М.Х. Применение эффекта сверхпластичности при деформировании компактных и полученных порошковой металлургией быстрорежущих сталей / М.Х. Шоршоров, Т.А. Чернышева, А.С. Базык и др. // XIII Pulvermet. Tagung. - Dresden. - 1985. - s.267-276.].

При регламентируемых температурно-скоростных условиях деформирования данная механическая металломатричная основа позволит обеспечить транспортирование металла наноуровня в поровые полости металломатрицы за счет реализации интенсивного пластического деформирования по схемам обработки металлов давлением с использованием эффекта сверхпластичности, что позволяет получать объемные сложнопрофильные изделия [Кокорин В.Н., Титов Ю.А., Федорова Л.В. Специальные способы обработки металлов давлением (ОМД). Учебное пособие. Ульяновск.: УлГТУ, - 2005. - 52 с].

Принципиальная структурная схема предложенного технологического процесса наноструктурирования материалов (НСМС) при изготовлении сложнопрофильных изделий с использованием эффекта сверхпластичности представлена на блок-схеме (фиг.1).

Использование металломатричной основы регламентированной переменной пористостью с заданным градиентом позволяет производить дифференцированный массоперенос порошкового наноматериала, формируя задаваемое разнообразие функциональных участков изделия с установленным уровнем физико-механических и технологических свойств.

Применение данного способа получения объемного сложнопрофильного наноструктурного материала позволит решить ряд технологических задач, при решении которых наибольший эффект обеспечивает деформирование данных структур в состоянии сверхпластичности:

1. Штамповка изделий особо сложной формы, получение которых недоступно для традиционных методов обработки давлением (тонкостенные детали сложной формы, с оребрением) при обеспечении значительного улучшения ряда показателей качества готовой продукции (размерная точность и чистота поверхности, отсутствие коробления в процессе термообработки и существенных изменений структур и, как следствие, практически полное отсутствие внутренних напряжений в изделиях);

2. Получение высококачественных штампованных заготовок и деталей, имеющих высокий уровень изотропности структуры и физико-механических свойств.

Наиболее устойчиво практическое использование состояния сверхпластичности в процессах обработки давлением, в частности, в технологиях объемной штамповки с использованием схем крип- штамповки на гидравлических прессах (при получении оребренных точных поковок сложной формы), так и термического расширения инструмента на термоупругих прессах.

Пример 1. Железный распыленный порошок марки АНС 100.29 фирмы «H6ganas» размером частиц 2-10 мкм засыпают в матрицу и спекают в состоянии свободной засыпки. Пористость полуфабриката типа «фильтр» составляет 40-75%.

Затем производят заполнение порового пространства пастообразной суспензией, состоящей из порошка наноразмеров и водно-спиртового раствора, с использованием шликерного литья.

Прессование полученного полуфабриката производится в стальной закрытой обойме на гидравлическом прессе в штампе, предварительно нагреваемом до температуры штамповки, с использованием температурно-скоростных режимов процесса сверхпластичности, вид нагружения - статический.

Процесс крип-штамповки проходит на гидропрессе при скорости деформирования в конце штамповки 0,04 мм/с и продолжается 3-5 мин. при температурах 870…980°C.

Пример 2. Железный распыленный порошок марки АНС 100.29 фирмы «Höganas» размером частиц 2-10 мкм засыпают в матрицу и спекают в состоянии свободной засыпки. Пористость полуфабриката типа «фильтр» составляет 60-75%.

Затем производят заполнение порового пространства пастообразной суспензией, состоящей из порошка наноразмеров и водно-спиртового раствора, с использованием шликерного литья.

Производят прессование полученного полуфабриката на термоупругом прессе за счет термического расширения матрицы с использованием температурно-скоростных режимов процесса сверхпластичности.

В массивный контейнер, нагретый до температуры 870…980°C, вводят сердечник, на наружной поверхности которого имеется рельеф, соответствующий оребрению. Между контейнером и сердечником находится заготовка.

Сердечник вместе с заготовкой нагревают в термоупругом прессе, при этом термическое расширение сердечника вызывает перемещение его наружной поверхности на определенную величину, необходимую для обеспечения рельефов металлом заготовки.

Образованная структура металла характеризуется отсутствием остаточной пористости, высоким уровнем гомогенности распределения наночастиц как в основном, так и в сложных элементах рельефа изделия.


СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНЫХ СЛОЖНОПРОФИЛЬНЫХ НАНОСТРУКТУРНЫХ КОНСТРУКЦИОННЫХ И ФУНКЦИОНАЛЬНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
20.04.2014
№216.012.b8e2

Способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой

Изобретение относится к порошковой металлургии, в частности к получению дисперсноупрочненной высокоазотистой аустенитной стали с нанокристаллической структурой. Смесь из порошков хрома, никеля, марганца и железа помещают в реактор, снабженный проточной системой газов, и добавляют мелющие шары в...
Тип: Изобретение
Номер охранного документа: 0002513058
Дата охранного документа: 20.04.2014
20.07.2014
№216.012.df2c

Способ получения нанокристаллических композиционных катодных материалов lifemsio/c

Изобретение относится к области электротехники, а именно к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторных батареях. Для получения нанокристаллических композиционных катодных материалов LiFeMSiO/C в качестве исходных компонентов выбирают...
Тип: Изобретение
Номер охранного документа: 0002522918
Дата охранного документа: 20.07.2014
10.09.2015
№216.013.78f3

Способ получения электрода для производства порошковых жаропрочных сплавов на основе алюминида титана

Изобретение относится к порошковой металлургии и может быть использовано при послойном нанесении материала по аддитивной технологии. Проводят предварительное механическое легирование исходной порошковой смеси из порошков титана и элементов, способных образовывать с ним твердые растворы...
Тип: Изобретение
Номер охранного документа: 0002562552
Дата охранного документа: 10.09.2015
10.06.2016
№216.015.46d4

Смазочная композиция с нанодисперсным диселенидом вольфрама

Настоящее изобретение относится к составу композиционного смазочного материала на базе масла МС-20, являющегося смазочной основой, и дисперсной присадки, при этом в качестве данной присадки используют продукт, представляющий собой нанодисперсные частицы диселенида вольфрама пластинчатой формы...
Тип: Изобретение
Номер охранного документа: 0002586335
Дата охранного документа: 10.06.2016
29.12.2017
№217.015.f0a4

Способ получения защитной оксидной пленки на металлической поверхности

Изобретение относится к области материаловедения, а именно к снижению скорости коррозии металлической поверхности изделия. Способ получения защитной оксидной пленки на металлической поверхности включает получение матрицы-основы, выполненной из железного порошка, путем смешивания железного...
Тип: Изобретение
Номер охранного документа: 0002638869
Дата охранного документа: 18.12.2017
Showing 261-270 of 412 items.
27.07.2015
№216.013.6884

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558309
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6885

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558310
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6886

Способ обработки маложестких заготовок сложнопрофильных деталей

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании маложестких заготовок с криволинейными поверхностями. Устанавливают на опорных шариках в акустических концентраторах напротив друг друга по обе стороны заготовки сферические...
Тип: Изобретение
Номер охранного документа: 0002558311
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6887

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558312
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6888

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002558313
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6948

Ремень безопасности для транспортного средства

Изобретение относится к ремню безопасности для транспортного средства. Ремень включает пряжку 1 с прорезью 2, сквозь которую с возможностью скольжения пропущена лямка 3 ремня, и язычковой защелкой 4, вводимой в запирающий пряжку замок 5, укрепленный на боковине 6 кресла 7. Перемычка 8 между...
Тип: Изобретение
Номер охранного документа: 0002558505
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6972

Узловое соединение стержневых элементов пространственной конструкции

Изобретение относится к области строительства, а именно к узловым соединениям в пространственных конструкциях покрытий. Технический результат изобретения заключается в упрощении монтажа узла за счет возможности соединения стержневых элементов при различных углах наклона к касательной плоскости...
Тип: Изобретение
Номер охранного документа: 0002558547
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dcd

Ремень безопасности для транспортного средства

Изобретение относится к ремню безопасности для транспортного средства. Ремень включает пряжку 1 с прорезью 2, сквозь которую протянута лямка 3, и язычковой защелкой 4, вводимой в замок 5, укрепленный на боковине 6 сиденья 7. Перемычка между прорезью пряжки и ее наружним контуром выполнена в...
Тип: Изобретение
Номер охранного документа: 0002559667
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dce

Устройство для отвода от автомобиля энергии встречного удара

Изобретение относится к области транспортного машиностроения. Устройство для отвода от автомобиля энергии встречного удара включает установленную в передней части автомобиля подвижную ударную поверхность. Подвижная ударная поверхность выполнена в виде изогнутой в форме части полого цилиндра...
Тип: Изобретение
Номер охранного документа: 0002559668
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7441

Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый...
Тип: Изобретение
Номер охранного документа: 0002561336
Дата охранного документа: 27.08.2015
+ добавить свой РИД