×
20.02.2014
216.012.a260

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ИНДИЯ ВЫСОКОЙ ЧИСТОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии редких и рассеянных элементов. Способ получения индия высокой чистоты включает вакуум-термическую обработку индия. При этом вакуум-термическую обработку проводят в две стадии. На первой стадии ее проводят при температуре 1000-1350°С, получают три конденсированные фракции, одна из которых обогащена труднолетучими примесями, другая содержит сконденсированные возгоны, обогащенные легколетучими примесями, а третья очищена от труднолетучих и легколетучих примесей. Третью фракцию направляют на вторую стадию вакуум-термической обработки, которую осуществляют при температуре 1100-1200°С и на которой металлический индий очищают от примесей со средней степенью летучести. Техническим результатом является получение продукта, содержащего индия не менее 99,9999% мас. 1 ил., 1 пр.
Основные результаты: Способ получения индия высокой чистоты, включающий вакуум-термическую обработку индия, отличающийся тем, что вакуум-термическую обработку проводят в две стадии, причем на первой стадии при температуре 1000-1350°С получают три конденсированные фракции, одна из которых обогащена труднолетучими примесями, другая содержит сконденсированные возгоны, обогащенные легколетучими примесями, а третья очищена от труднолетучих и легколетучих примесей, при этом третью фракцию направляют на вторую стадию вакуум-термической обработки при температуре 1100-1200°С, на которой металлический индий очищают от примесей со средней степенью летучести с получением продукта, содержащего индия не менее 99,9999 мас. %.

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении индия высокой чистоты.

При использовании индия для синтеза соединений, применяемых в электронной промышленности, предъявляются высокие требования к чистоте материала. Чистота металлического индия определяется по содержанию индия. Для электронной промышленности требуется индий с содержанием индия не менее 99,9999% по массе. Чистота индия напрямую влияет на свойства синтезируемых соединений.

Известны различные способы получения индия высокой чистоты, включающие химические, электрохимические, вакуумную дистилляцию и кристаллофизические методы очистки.

Так, например, известен способ получения индиевого порошка высокой чистоты, включающий перевод индия в хлорид индия (I), последующую обработку вспомогательными веществами, промывку полученного осадка и его сушку, отличающийся тем, что в качестве вспомогательных веществ последовательно используют бидистиллят при объемном соотношении бидистиллят : индий = (3,5 4,5): 1 и раствор уксусной кислоты с рН 2,0-2,5 при объемном соотношении уксусная кислота: индий = (4-5): 1 (см. патент RU №2218244, опубл. 10.02.2004 г., С22В 58/00).

Недостатком способа является его многостадийность и невысокая чистота индиевого порошка - на уровне 99,999% по массе.

Известен способ получения индия и галлия высокой чистоты методом электропереноса в магнитном поле. Метод основан на электропереносе в жидких металлах, помещенных в поперечное постоянное магнитное поле, получены индий и галлий высокой чистоты (7N). Определены значения относительного остаточного сопротивления (интегральной характеристики чистоты материалов) полученных индия (25000 отн. ед.) и галлия (85000 отн. ед.) и проведено их сравнение с другими марками этих металлов. Разработан способ эффективной финишной очистки высокочистых материалов для микро - и наноэлектроники с помощью поперечного электропереноса в магнитном поле. (Preparation of high-purity indium and gallium via electrotransfer in a magnetic field. Trunin E.B., Trunina O.E. Inorganic Materials. 2003. Т. 39. №8. С.798-801.).

Недостатками способа являются невозможность использования в качестве исходного металла индия марки чистотой 99,99% по массе и более грязного, низкая производительность.

Имеется информация о возможности получения высокочистого индия сочетанием вакуумной дистилляции и зонной плавки. Удаление примесей активизируется, во-первых, по причине различной скорости испарения компонентов, во-вторых, паровой перегонкой примесей вблизи конденсирующей подложки в условиях осаждения примесей при определенной температуре. По теоретическим оценкам, приведенным в работе, достижимая интегральная чистота индия при содержании примесей в рафинируемом индии более 1·10-1 весовых процентов будет на уровне 99,91% по массе. (Журнал «Труды молодых ученых», №1, 2009 г., РАН, Владикавказский научный центр, Ачеева Э.А., Созаев В.А., Гринюк В.Н. «О возможности получения высокочистого индия сочетанием вакуумной дистилляции и зонной плавки»).

Недостатком этого процесса является низкая чистота очищенного индия - на уровне 99,91% по массе.

Известен способ вакуум-термической (дистилляционной) очистки индия. Способ используется в качестве завершающей стадии получения индия высокой чистоты. При вакуум-термической (дистилляционной) очистке индия, описанной в данном способе, примеси более летучие, чем индий, прежде всего примеси с достаточно высоким парциальным давлением при температурах 600-1000°С, при которых испарение индия незначительно, испаряются из индия и удаляются. Очистка индия от труднолетучих примесей по этому способу не происходит. («Индий. Технологии получения». Л.А.Казанбаев, П.А.Козлов, В.Л.Кубасов, В.Ф.Травкин (ИД "Руда и Металлы", 2004 г., с.145-153).

Недостатком способа является необходимость глубокой очистки индия, подвергаемого вакуум-термической (дистилляционной) очистке от трудноудаляемых примесей, таких как Sn, Pb, Сu и др.

Способ принят за прототип.

Техническим результатом заявленного изобретения является получение металлического индия с содержанием индия не менее 99,9999% по массе.

Технический результат достигается тем, что в способе получения индия высокой чистоты вакуум-термической обработкой индия, согласно изобретению вакуум-термическую обработку проводят в две стадии: на первой стадии при температуре 1000-1350°С получают три конденсированные фракции, одну фракцию, обогащенную труднолетучими примесями, другую - сконденсированные возгоны, обогащенные легколетучими примесями, и третью фракцию, очищенную от труднолетучих и легколетучих примесей, которую направляют на вторую стадию и подвергают вакуум-термической обработке при температуре 1100-1200°С, где металлический индий очищается от примесей со средней степенью летучести с получением продукта, содержащего 99,9999% масс. индия.

Сущность способа заключается в следующем. Металлический индий подвергают вакуум-термической обработке в вакуумной камере (рис.1) с нагревателем (4), графитовыми тиглями, расположенными в ней один над другом (1,2), в две стадии: на первой стадии индий (3), размещенный в тигле №1, подвергают термообработке при температуре 1100-1350°С в вакууме с остаточным давлением 5х10-2-5х10-3 мм рт.ст. и получают три фракции: одну фракцию в тигле №1 (кубовый остаток), обогащенную труднолетучими примесями, другую - сконденсированные возгоны в тигле №2, очищенную от труднолетучих и легколетучих примесей, и третью фракцию, обогащенную легколетучими примесями, сконденсированными на холодной поверхности вакуумной камеры (5). На первой стадии осуществляется очистка металлического индия от труднолетучих примесей, таких как Sn и Сu, и концентрирование их в кубовом остатке, и от легколетучих As, Cd, Zn, сконденсированных на холодной поверхности вакуумной камеры. Сконденсированные возгоны на первой стадии в тигле №2, содержащие примеси (Pb, Sb, Tl, Bi), после охлаждения перемещают в тигель №1, предварительно выгрузив из него кубовый остаток и подвергают вакуум-термической обработке на второй стадии при температуре 1100-1200°С в вакууме с остаточным давлением 5х10-2-5х10-3 мм рт.ст. На этой стадии индий очищается от примесей, очистка от которых не происходит на первой стадии (Pb, Sb, Tl, Bi).

Продолжительность вакуум-термической обработки зависит от количества загружаемого металлического индия и должна обеспечивать на первой стадии очистки количество возгонов не более 90% от исходного количества, загруженного на вакуум-термическую обработку индия. А на второй стадии вакуум-термической обработки индия количество возгонов не менее 10% от исходного количества, загруженного на вторую стадию вакуум-термической обработки индия.

В результате проведения вакуум-термической дистилляционной очистки индия получают индий с содержанием индия не менее 99,9999% по массе.

Обоснование заявленных параметров процесса

Проведение первой стадии термообработки индия при температуре ниже 1000°С не позволяет отделить труднолетучие примеси от основной массы очищаемого индия из-за низкой летучести индия при температуре ниже 1000°С, что приводит к снижению производительности процесса. Увеличение температуры выше 1350°С приводит к повышению концентрации труднолетучих примесей в очищенной фракции на первой стадии и повышенной концентрации труднолетучих примесей в очищенном металле на второй стадии. Содержание металлического индия в очищенном индии при температуре выше 1350°С не превышает 99,999% по массе.

Проведение второй стадии термообработки индия при температуре ниже 1100°С приводит к повышению среднелетучих примесей в очищенном индии, и содержание металлического индия в очищенном индии не превышает 99,999% по массе. Увеличение температуры выше 1200°С приводит к снижению выхода очищенного индия из-за его перераспределения с возгонами, содержащими примеси.

Пример осуществления способа

Вакуум-термическую дистилляционную очистку индия проводили в графитовых тиглях, соосно расположенных друг над другом. Схематически вакуумная камера с нагревателем и графитовыми тиглями представлена на рис.1. Пять килограммов индия с содержанием индия 99,9% по массе загружали в тигель №1 и откачивали вакуум до степени 5х10-2 мм рт.ст. Температуру в зоне тигля №1 поднимали до 1300°С. Процесс вакуум-термической обработки проводили в течение 6 часов. После охлаждения сконденсированный материал из тигля №2 в количестве четырех килограммов 567 граммов перемещали в тигель №1, предварительно выгрузив из него кубовый остаток. Вторую стадию вакуум-термической обработки индия проводили при температуре 1100°С, в вакууме 5х10-2 мм рт.ст. и продолжительности процесса 2 часа. Полученный в тигле №1 индий в количестве четырех килограммов 145 граммов анализировали методом масс-спектроскопии. Содержание индия в металле после дистилляционной очистки не менее 99,9999% по массе, а уровень лимитируемых примесей не превышает уровня соответствующего металлическому индию марки Ин0000.

Из приведенных данных видно, что использование предлагаемого способа по сравнению с известным позволяет получать металлический индий с содержанием индия не менее 99,9999% по массе, а уровень лимитируемых примесей не превышает уровня примесей, соответствующих металлическому индию марки Ин0000.

Способ получения индия высокой чистоты, включающий вакуум-термическую обработку индия, отличающийся тем, что вакуум-термическую обработку проводят в две стадии, причем на первой стадии при температуре 1000-1350°С получают три конденсированные фракции, одна из которых обогащена труднолетучими примесями, другая содержит сконденсированные возгоны, обогащенные легколетучими примесями, а третья очищена от труднолетучих и легколетучих примесей, при этом третью фракцию направляют на вторую стадию вакуум-термической обработки при температуре 1100-1200°С, на которой металлический индий очищают от примесей со средней степенью летучести с получением продукта, содержащего индия не менее 99,9999 мас. %.
СПОСОБ ПОЛУЧЕНИЯ ИНДИЯ ВЫСОКОЙ ЧИСТОТЫ
Источник поступления информации: Роспатент

Showing 1-8 of 8 items.
10.02.2014
№216.012.9ec4

Кристаллы на основе бромида таллия для детекторов ионизирующего излучения

Изобретение относится к области получения материалов детекторов для регистрации ионизирующего излучения, которые могут быть использованы для инфракрасной оптики, лазерной техники, акустооптики. Кристалл на основе бромида таллия дополнительно содержит бромид кальция при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002506352
Дата охранного документа: 10.02.2014
10.03.2014
№216.012.aa9f

Способ получения термоэлектрического материала n-типа на основе твердых растворов bite-bise

Изобретение относится к производству термоэлектрических материалов. Сущность: для получения стержней термоэлектрического материала на основе твердых растворов BiTe-BiSe n-типа проводимости с эффективностью ZT>1,2 и механической прочностью не менее 150 МПа осуществляют механоактивационный синтез...
Тип: Изобретение
Номер охранного документа: 0002509394
Дата охранного документа: 10.03.2014
20.07.2014
№216.012.de03

Способ получения кристаллов галогенидов таллия

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов...
Тип: Изобретение
Номер охранного документа: 0002522621
Дата охранного документа: 20.07.2014
20.11.2014
№216.013.08af

Способ получения термоэлектрического материала n-типа на основе тройных твердых растворов mgsisn

Изобретение относится к порошковой металлургии, в частности к производству термоэлектрических материалов (ТЭМ) n-типа проводимости на основе тройного твердого раствора MgSiSn. Может использоваться при изготовлении среднетемпературных термоэлектрических генераторов возобновляемой энергии,...
Тип: Изобретение
Номер охранного документа: 0002533624
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a8a

Способ получения крупногабаритных малодислокационных монокристаллов антимонида галлия

Изобретение относится к области получения полупроводниковых материалов, которые используются в качестве подложечного материала в изопериодных гетероструктурах на основе тройных и четверных твердых растворов в системах Al-Ga-As-Sb и In-Ga-As-Sb, позволяющих создавать широкую гамму...
Тип: Изобретение
Номер охранного документа: 0002534106
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b60

Способ получения нанопорошков индивидуальных оксидов лантаноидов

Изобретение относится к гидрометаллургии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном...
Тип: Изобретение
Номер охранного документа: 0002534320
Дата охранного документа: 27.11.2014
10.05.2016
№216.015.3cf3

Способ получения галлия высокой чистоты

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты. Технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещенными в ней графитовыми тиглями, соосно расположенными один над другим. В...
Тип: Изобретение
Номер охранного документа: 0002583574
Дата охранного документа: 10.05.2016
09.06.2019
№219.017.7e32

Устройство для локального нанесения металлических покрытий электролитическим методом

Изобретение относится к электронному и термоэлектрическому приборостроению. Устройство содержит источник тока, ванну с выполненным в ее стенке окном, перекрытым эластичной вставкой для герметичного крепления покрываемых с отдельной стороны или грани образцов материалов одинаковой или разной...
Тип: Изобретение
Номер охранного документа: 0002402644
Дата охранного документа: 27.10.2010
Showing 1-7 of 7 items.
10.02.2014
№216.012.9ec4

Кристаллы на основе бромида таллия для детекторов ионизирующего излучения

Изобретение относится к области получения материалов детекторов для регистрации ионизирующего излучения, которые могут быть использованы для инфракрасной оптики, лазерной техники, акустооптики. Кристалл на основе бромида таллия дополнительно содержит бромид кальция при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002506352
Дата охранного документа: 10.02.2014
10.03.2014
№216.012.aa9f

Способ получения термоэлектрического материала n-типа на основе твердых растворов bite-bise

Изобретение относится к производству термоэлектрических материалов. Сущность: для получения стержней термоэлектрического материала на основе твердых растворов BiTe-BiSe n-типа проводимости с эффективностью ZT>1,2 и механической прочностью не менее 150 МПа осуществляют механоактивационный синтез...
Тип: Изобретение
Номер охранного документа: 0002509394
Дата охранного документа: 10.03.2014
20.07.2014
№216.012.de03

Способ получения кристаллов галогенидов таллия

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов...
Тип: Изобретение
Номер охранного документа: 0002522621
Дата охранного документа: 20.07.2014
20.11.2014
№216.013.08af

Способ получения термоэлектрического материала n-типа на основе тройных твердых растворов mgsisn

Изобретение относится к порошковой металлургии, в частности к производству термоэлектрических материалов (ТЭМ) n-типа проводимости на основе тройного твердого раствора MgSiSn. Может использоваться при изготовлении среднетемпературных термоэлектрических генераторов возобновляемой энергии,...
Тип: Изобретение
Номер охранного документа: 0002533624
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a8a

Способ получения крупногабаритных малодислокационных монокристаллов антимонида галлия

Изобретение относится к области получения полупроводниковых материалов, которые используются в качестве подложечного материала в изопериодных гетероструктурах на основе тройных и четверных твердых растворов в системах Al-Ga-As-Sb и In-Ga-As-Sb, позволяющих создавать широкую гамму...
Тип: Изобретение
Номер охранного документа: 0002534106
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b60

Способ получения нанопорошков индивидуальных оксидов лантаноидов

Изобретение относится к гидрометаллургии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном...
Тип: Изобретение
Номер охранного документа: 0002534320
Дата охранного документа: 27.11.2014
10.05.2016
№216.015.3cf3

Способ получения галлия высокой чистоты

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты. Технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещенными в ней графитовыми тиглями, соосно расположенными один над другим. В...
Тип: Изобретение
Номер охранного документа: 0002583574
Дата охранного документа: 10.05.2016
+ добавить свой РИД