×
10.02.2014
216.012.9fff

Результат интеллектуальной деятельности: КВАНТОВО-ТОЧЕЧНЫЙ СВЕТОИЗЛУЧАЮЩИЙ ОРГАНИЧЕСКИЙ ДИОД

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при создании эффективных устройств для отображения алфавитно-цифровой и графической информации. Актуальность создания алфавитно-цифровых дисплеев нового поколения обусловлена растущим потоком визуальной информации и прогрессом в компьютерной технике. Предлагается конструкция квантово-точечного светоизлучающего органического диода с монослоем полупроводниковых квантовых точек, расположенным на расстоянии от электрон-проводящего и дырочно-проводящего слоев, определяемым выражением, связывающим ферстеровский радиус и радиус квантовой точки. Активный элемент представляет собой монослой двухкомпонентных (ядро-оболочка) полупроводниковых наночастиц, обладающих возможностью изменения диаметра полупроводникового ядра в пределах 2.0-6.0 нм и толщины полупроводниковой оболочки в пределах 1.0-3.0 нм для регулирования области излучения в пределах 400-650 нм видимого спектра. Изобретение обеспечивает возможность создания максимально эффективных с точки зрения передачи энергии возбуждения от донора к активному слою, стабильных светоизлучающих органических диодов с регулируемым спектром излучения в видимом диапазоне длин волн, что особенно важно для создания алфавитно-цифровых дисплеев нового поколения. 2 ил., 1 табл.
Основные результаты: Квантово-точечный светоизлучающий органический диод с активным элементом в виде монослоя полупроводниковых двухкомпонентных (ядро-оболочка) квантовых точек, расположенных на определенном расстоянии от границы электрон-проводящего и дырочно-проводящего слоев, отличающийся тем, что активный элемент находится на расстоянии от границы электрон-проводящего и дырочно-проводящего слоев l,определяемым выражением , где R - ферстеровский радиус и радиус квантовой точки, а квантовые точки синтезированы с возможностью изменения диаметра полупроводникового ядра в пределах 2.0-6.0 нм и толщины полупроводниковой оболочки в пределах 1.0-3.0 нм для регулирования области излучения в пределах 400-650 нм видимого спектра.

Изобретение относится к области оптики, в частности к электролюминесцирующим наноструктурам, и может быть использовано при создании эффективных устройств для отображения алфавитно-цифровой и графической информации. Актуальность создания алфавитно-цифровых дисплеев нового поколения обусловлена растущим потоком визуальной информации и прогрессом в компьютерной технике.

Существует ряд подходов к решению данной задачи, но наиболее перспективным является использование OLED-технологий (англоязычная аббревиатура OLED - Organic Light Emitting Diode - органический светоизлучающий диод), позволяющих создавать низкоэнергоемкие органические светоизлучающие устройства с высокими потребительскими качествами. С другой стороны, имеется острая потребность в управлении спектром излучения данных диодов для создания насыщенных цветов RGB в случае использования их в качестве пикселя алфавитно-цифрового дисплея и «правильного» спектра излучения в случае использования в качестве источника освещения.

Для этих целей в настоящее время используются многослойные структуры с наличием трех активных слоев различных красителей. Каждый активный слой дает излучение в разных участках видимого спектра (красный, зеленый, синий - RGB). Такая конструкция чрезвычайно сложна в технологическом исполнении и требует дорогостоящих материалов, что приводит к нерентабельности дисплеев при использовании данной технологии. Использование такого подхода к OLED-технологии значительно увеличивает ее цену.

Использование в устройстве эффективного излучателя фотонов, созданного из одного материала, чрезвычайно привлекательно.

Представляется важным для OLED-технологии использование гибридных материалов в качестве активной среды, которые, с одной стороны, ликвидируют главный недостаток OLED-технологии - недолговечность светоизлучающих материалов, а с другой - позволяют легко менять спектр излучения. Гибридные материалы представляют собой органическую матрицу с внедренными квантовыми точками (нанообъектами). В настоящий момент в качестве квантовых точек используются полупроводниковые двухкомпонентные нанокристаллы [V.Wood, V.Bulovic, Nano Reviews, 1 (2010) 5202].

Наиболее близким техническим решением к предлагаемому устройству является светоизлучающий органический диод с использованием квантовых точек [Seth Сое-Sullivan et al., Organic Electronics, 4 (2003) 123, Tae-Ho Kim et al., Nature Photonics, 5 (2011) 176], основным элементом конструкции которого является монослой полупроводниковых квантовых точек, расположеный на границе дырочно- и электрон-проводящих слоев.

Активный слой дает излучение в разных участках видимого спектра (красный, зеленый, синий - RGB) в зависимости от размера квантовых точек. Такая конструкция требует непростых технологических решений и не в полном объеме позволяет использовать преимущества квантовых точек перед стандартными органическими или металлорганическими материалами активного слоя. Практически все светоизлучающие органические диоды построены с использованием органических люминофоров в планарной геометрии. Основными недостатками, помимо сложности конструкции и дороговизны, является быстрая деградация органических люминофоров, а также недостаточно эффективный механизм передачи энергии возбуждения от люминофора к квантовой точке и, как следствие - низкая общая эффективность светоизлучающих органических диодов с использованием квантовых точек. Сопоставление и оптоэлектронные характеристики различных конструкций светоизлучающих органических диодов приведены в недавно вышедшей монографии [М.Н.Бочкарев, А.Г.Витухновский, М.А.Каткова, Органические светоизлучающие диоды (OLED), Нижний Новгород: ДЕКОМ (2011) 360 с.].

Задачей, решаемой изобретением, является создание стабильных светоизлучающих квантово-точечных органических диодов с высоким квантовым выходом, при этом обладающих возможностью регулирования спектра излучения в видимом диапазоне длин волн (400-650 нм), что особенно важно для создания алфавитно-цифровых дисплеев нового поколения.

Предлагаемое устройство - квантово-точечный светоизлучающий органический диод с оптимально расположенным монослоем квантовых точек относительно электрон-проводящего и дырочно-проводящих слоев является оптимальным решением данной задачи.

Поставленная в заявке задача решается следующим образом.

В предлагаемом изобретении использована простейшая схема органического светоизлучающего диода (см Фиг.1), при которой на прозрачную подложку (7) (стекло либо полимерную пленку (например, PET)) наносятся последовательно: сначала прозрачный проводящий анод (6) (например, ITO), затем дырочно-проводящий слой (3) (например, TPD), содержащий монослой квантовых точек (4) (например, CdSe/CdS) на определенном расстоянии от электрон-проводящего слоя (2) (например, Alq3), и, на заключительном этапе наносится катод (1) (например, CaAl).

Дырочно-проводящий слой (например, TPD) наносится методом spin-coating'a (центрифугированием) с внедрением определенного числа квантовых точек, которые в процессе spin-coating'a образуют монослой. Затем на монослой квантовых точек опять методом spin-coating'a наносится определенное количество дырочно-проводящего материала. Все остальные слои, а также катод наносятся методом термического испарения в вакуумной камере. Характерные толщины дырочно-проводящего и электрон-проводящих слоев не превышают 100 нм. Цифрой (8) на Фиг.1 обозначен излучаемый свет, длина волны которого определяется размером наночастиц.

Электрон в нанокристалле ведет себя как электрон в трехмерной потенциальной яме, он имеет ряд стационарных уровней энергии с характерным расстоянием между ними, , где m - эффективная масса, d - размер квантовой точки. Аналогично переходу между уровнями энергии атома, при переходе между энергетическими уровнями квантовой точки может излучаться фотон. Возможно также «забросить» электрон на высокий энергетический уровень, а излучение получить от перехода между более низколежащими уровнями (люминесценция). При этом, в отличие от настоящих атомов, частотами переходов легко управлять, меняя размеры квантовой точки.

Предлагается использовать синтезированные методом коллоидной химии [B.Murray, D.J.Norris, M.G.Bawendi, J. Am. Chem. Soc., 115 (1993) 8706] двухкомпонентные полупроводниковые наночастицы, состоящие из полупроводникового ядра (например CdSe, CdTe) и полупроводникой нанооболочки (например, CdS, ZnS). Полученные наночастицы должны быть покрыты поверхностно активным веществом (например, tri-n-octylphospine oxide - ТОРО) для предотвращения агрегации. Диаметр ядра наночастиц варьируется от 2.0 нм до 6.0 нм при толщине оболочки 1.0-3.0 нм.

В таблице 1 приведены примеры составляющих компонент квантово-точечного светящегося органического диода: Структурная формула дырочно-проводящего слоя TPD - N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine, структурная формула электрон-проводящего слоя Alq3 - Tris(8-hydroxy-quinolinato)aluminium, двухкомпонентные квантовые точки CdSe/CdS.

Таблица 1

Структурная формула дырочно-проводящего слоя Структурная формула электрон-проводящего слоя Alq3 Схема двухкомпонентных квантовых точек СdCe/CdS

Устройство работает следующим образом:

При приложении напряжения (порядка 5В) между электродами «анод» (6) - «катод» (1) происходит движение и рекомбинация носителей заряда, приводящая к электронному возбуждению молекул дырочно-проводящего слоя. Возбужденные молекулы дырочно-проводящего слоя передают энергию электронного возбуждения резонансным методом по механизму Ферстера [Th. Forster, Ann. Phys. 437, 55 (1948)] квантовым точкам, что приводит к испусканию света в диапазоне 400-650 нм.

В случае ферстеровского механизма передача энергии между двумя молекулами, наноразмерными объектами или областями материала донором является объект передающий энергию, акцептором - ее принимающий. Передача энергии происходит на расстояния порядка десятка нанометров и происходит безизлучательно за счет диполь-дипольного взаимодействия. Ферстеровский радиус RF, являющийся характерным расстоянием между донором и акцептором, при котором скорость передачи энергии становиться равной скорости радиационного распада экситона в доноре, равен

где с - скорость света, n - коэффициент преломления среды, в которой происходит передача, Fd(ω) - нормализованный спектр излучения донора, σа(ω) - сечение поглощения акцептора. Скорость передачи энергии электронного возбуждения органической молекулы донора к монослою квантовых точек вычисляется путем интегрирования по этому монослою [H.Kuhn, J. Chem. Phys. 53 (1970) 101]:

Здесь a - радиус квантовой точки, τ - время релаксации донора за счет фотолюминесценции, l - расстояние от донора до плоскости квантовых точек акцептора, и lF - расстояние для передачи энергии от единичного донора к плоскости акцепторов выражается через ферстеровский радиус RF и радиус а квантовой точки . Таким образом, в случае равенства расстояния l от донора до слоя квантовых точек, вычисляемому lF, скорость передачи энергии будет равна скорости радиационного распада экситона в доноре и передача энергии квантовым точкам будет осуществяться наиболее эффективным образом.

На Фиг.2 представлена зависимость оптимальной величины смещения монослоя квантовых точек относительно границы электрон-проводящего и дырочно-проводящих слоев, lopt, от радиуса квантовой точки, а, и показателя преломления вспомогательного слоя, n.

Из Фиг.2 следует, что значение радиуса квантовой точки и показателя преломления, n, прианодного слоя существенно изменяет оптимальную величину, lорt, на которую необходимо сместить монослой квантовых точек относительно границы электрон-проводящего и дырочно-проводящих слоев для достижения максимальной величины вероятности γ возбуждения электрон-дырочной пары в полупроводниковой квантовой точке и, следовательно, увеличения внешней квантовой эффективности предлагаемого устройства.

В заявляемом устройстве (см. Фиг.1) наноизлучатели, квантовые точки (4), расположены в виде монослоя (4), на определенном расстоянии (5), определяемом выражением , (RF - ферстеровский радиус и a - радиус квантовой точки) от поверхности раздела электрон-поводящего слоя (2) и дырочно-проводящего слоя (3). Анод (5) выполнен из стандартного для OLED-технологии материала - сплава с малой работой выхода, подложка (7) может быть как стеклянная, так и гибкая на основе прозрачного полимера (например, РЕТ), покрытая проводящим и прозрачным материалом (например ITO), являющаяся анодом (6). Выходящий свет отмечен как (8).

Таким образом, предлагаемое устройство обладает следующими преимуществами:

1) высоким квантовым выходом. Сравнение люминесцентных свойств наночастиц с красителями родаминового ряда в растворе и в конденсированной фазе показало, что в конденсированной фазе квантовый выход люминесценции наночастиц на два порядка превышает квантовый выход красителей.

2) стабильностью, обусловленной использованием в качестве эмиттера света полупроводниковых наночастиц (квантовых точек), не подверженных действию атмосферы.

3) возможностью регулирования спектра излучения.

Возможно использование квантово-точечного светоизлучающего органического диода в качестве пикселя алфавитно-цифрового дисплея при использовании напряжений 5-10 В и получении яркости свечения порядка 100 кд/м2, что соответствует требованиям, предъявляемым к стандартным компьютерным мониторам.

Квантово-точечный светоизлучающий органический диод с активным элементом в виде монослоя полупроводниковых двухкомпонентных (ядро-оболочка) квантовых точек, расположенных на определенном расстоянии от границы электрон-проводящего и дырочно-проводящего слоев, отличающийся тем, что активный элемент находится на расстоянии от границы электрон-проводящего и дырочно-проводящего слоев l,определяемым выражением , где R - ферстеровский радиус и радиус квантовой точки, а квантовые точки синтезированы с возможностью изменения диаметра полупроводникового ядра в пределах 2.0-6.0 нм и толщины полупроводниковой оболочки в пределах 1.0-3.0 нм для регулирования области излучения в пределах 400-650 нм видимого спектра.
КВАНТОВО-ТОЧЕЧНЫЙ СВЕТОИЗЛУЧАЮЩИЙ ОРГАНИЧЕСКИЙ ДИОД
КВАНТОВО-ТОЧЕЧНЫЙ СВЕТОИЗЛУЧАЮЩИЙ ОРГАНИЧЕСКИЙ ДИОД
КВАНТОВО-ТОЧЕЧНЫЙ СВЕТОИЗЛУЧАЮЩИЙ ОРГАНИЧЕСКИЙ ДИОД
Источник поступления информации: Роспатент

Showing 21-30 of 54 items.
10.04.2015
№216.013.3e17

Способ нанесения эмиссионного слоя

Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002547383
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9a

Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния

Изобретение может быть использовано при изготовлении фоточувствительных элементов солнечной энергетики и приборов ночного видения. Сухую поверхность кремния облучают множественными фокусированными ультракороткими фемто- или короткими пикосекундными лазерными импульсами (УКИ) для её абляционного...
Тип: Изобретение
Номер охранного документа: 0002550868
Дата охранного документа: 20.05.2015
20.11.2015
№216.013.8f51

Генератор быстрых моноэнергетических нейтронов

Заявленное изобретение относится к генераторам быстрых моноэнергетических нейтронов. В заявленном устройстве предусмотрено использование алмазной кристаллической структуры, поверхность которой облучается ускоренным до нескольких десятков кэВ пучком ионов дейтерия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002568305
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9251

Устройство для регулировки развала схождения колес автомобиля

Устройство состоит из измерительной рамки с цифровыми, угловыми и линейными значениями, лазерного прибора, который проецирует на нее крестообразный лазерный луч, держателей, которые удерживают лазерный прибор и измерительную рамку на соответствующем колесе, поворотных подставок для свободного...
Тип: Изобретение
Номер охранного документа: 0002569073
Дата охранного документа: 20.11.2015
20.03.2016
№216.014.c986

Способ синтеза 4a,5b,10,12-тетраазаиндено[2,1-b]флуорена

Изобретение относится к области органической химии, а именно к способу получения 4а,5b,10,12-тетраазаиндено[2,1-b]флуорена, заключающемуся в том, что взаимодействие пиридина с 1,5-дихлор-2,4-динитробензолом проводят при температуре 20°C в ацетоне и мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002577543
Дата охранного документа: 20.03.2016
20.06.2016
№217.015.035c

Аподизатор лазерного пучка

Аподизатор лазерного пучка включает зубчатую диафрагму и пространственный фильтр, в котором зубчатая диафрагма с радиусом окружности вершин зубцов R дополнена корректирующим элементом. Корректирующий элемент выполнен в виде установленного соосно с диафрагмой непрозрачного кольца с внешним...
Тип: Изобретение
Номер охранного документа: 0002587694
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.3843

Дисковый лазер (варианты)

Изобретение относится к лазерной технике. Дисковый лазер состоит из оптического резонатора с первой оптической осью, активной пластины, имеющей первую поверхность и вторую поверхность, размещенной внутри оптического резонатора и закрепленной на хладопроводящей подложке своей первой...
Тип: Изобретение
Номер охранного документа: 0002582909
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.bf97

Способ электрометрического измерения производной химического потенциала по температуре и устройство для его осуществления

Изобретение относится к области электрометрического анализа химического потенциала μ c помощью модуляции температуры T и может быть использовано для исследования характеристик имеющихся и для конструирования новых элементов наноэлектроники. Предложен способ измерения ∂μ/∂T, который позволяет...
Тип: Изобретение
Номер охранного документа: 0002617149
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfba

Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки gaas/algaas

Изобретение относится к физике полупроводниковых структур. Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки GaAs/AlGaAs заключается в том, что соединяют параллельно активные модули, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002617179
Дата охранного документа: 21.04.2017
Showing 21-30 of 40 items.
20.05.2015
№216.013.4b9a

Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния

Изобретение может быть использовано при изготовлении фоточувствительных элементов солнечной энергетики и приборов ночного видения. Сухую поверхность кремния облучают множественными фокусированными ультракороткими фемто- или короткими пикосекундными лазерными импульсами (УКИ) для её абляционного...
Тип: Изобретение
Номер охранного документа: 0002550868
Дата охранного документа: 20.05.2015
20.11.2015
№216.013.8f51

Генератор быстрых моноэнергетических нейтронов

Заявленное изобретение относится к генераторам быстрых моноэнергетических нейтронов. В заявленном устройстве предусмотрено использование алмазной кристаллической структуры, поверхность которой облучается ускоренным до нескольких десятков кэВ пучком ионов дейтерия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002568305
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9251

Устройство для регулировки развала схождения колес автомобиля

Устройство состоит из измерительной рамки с цифровыми, угловыми и линейными значениями, лазерного прибора, который проецирует на нее крестообразный лазерный луч, держателей, которые удерживают лазерный прибор и измерительную рамку на соответствующем колесе, поворотных подставок для свободного...
Тип: Изобретение
Номер охранного документа: 0002569073
Дата охранного документа: 20.11.2015
20.03.2016
№216.014.c986

Способ синтеза 4a,5b,10,12-тетраазаиндено[2,1-b]флуорена

Изобретение относится к области органической химии, а именно к способу получения 4а,5b,10,12-тетраазаиндено[2,1-b]флуорена, заключающемуся в том, что взаимодействие пиридина с 1,5-дихлор-2,4-динитробензолом проводят при температуре 20°C в ацетоне и мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002577543
Дата охранного документа: 20.03.2016
20.06.2016
№217.015.035c

Аподизатор лазерного пучка

Аподизатор лазерного пучка включает зубчатую диафрагму и пространственный фильтр, в котором зубчатая диафрагма с радиусом окружности вершин зубцов R дополнена корректирующим элементом. Корректирующий элемент выполнен в виде установленного соосно с диафрагмой непрозрачного кольца с внешним...
Тип: Изобретение
Номер охранного документа: 0002587694
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.3843

Дисковый лазер (варианты)

Изобретение относится к лазерной технике. Дисковый лазер состоит из оптического резонатора с первой оптической осью, активной пластины, имеющей первую поверхность и вторую поверхность, размещенной внутри оптического резонатора и закрепленной на хладопроводящей подложке своей первой...
Тип: Изобретение
Номер охранного документа: 0002582909
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.bf97

Способ электрометрического измерения производной химического потенциала по температуре и устройство для его осуществления

Изобретение относится к области электрометрического анализа химического потенциала μ c помощью модуляции температуры T и может быть использовано для исследования характеристик имеющихся и для конструирования новых элементов наноэлектроники. Предложен способ измерения ∂μ/∂T, который позволяет...
Тип: Изобретение
Номер охранного документа: 0002617149
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfba

Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки gaas/algaas

Изобретение относится к физике полупроводниковых структур. Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки GaAs/AlGaAs заключается в том, что соединяют параллельно активные модули, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002617179
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.e6c8

9-антраценаты лантанидов, проявляющие люминесцентные свойства, и органические светодиоды на их основе

Изобретение относится к новым комплексам лантанидов с органическими лигандами, которые могут быть использованы в органических светоизлучающих диодах. Описываются 9-антраценаты лантанидов формулы M(ant), где М - лантан и лантаниды, кроме прометия Pm и церия Ce, проявляющие люминесцентные...
Тип: Изобретение
Номер охранного документа: 0002626824
Дата охранного документа: 02.08.2017
+ добавить свой РИД