×
20.11.2013
216.012.8338

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ФАЗОВОЙ ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ ДИНАМИЧЕСКОГО ОБЪЕКТА

Вид РИД

Изобретение

№ охранного документа
0002499268
Дата охранного документа
20.11.2013
Аннотация: Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания и проводится на каждой частоте входного моногармонического сигнала до тех пор, пока средние определяемые значения коэффициентов Фурье выходного сигнала не станут достаточно постоянными, т.е. до тех пор, пока относительные разности между вновь вычисленными средними значениями коэффициентов Фурье выходного сигнала и предыдущими значениями этих параметров не станут по модулю меньше наперед заданного точностного параметра. При этом анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится по нескольким дополнительным гармоникам. В этом случае окончание переходного процесса втягивания динамического объекта в вынужденные периодические колебания определяется числом необходимых периодов для завершения переходного процесса той гармоники, для которой оно является максимальным. Технический результат - повышение точности определения амплитудно-фазовых частотных характеристик. 1 ил.
Основные результаты: Способ определения амплитудно-фазовой частотной характеристики динамического объекта, заключающийся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении шага разбиения периода входного моногармонического сигнала по времени и числа значений ординат выходного периодического сигнала в зависимости от частоты, определении коэффициентов Фурье исследуемой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала, определении средних значений коэффициентов Фурье исследуемой гармоники за пройденное количество периодов входного моногармонического сигнала, проведении сравнения модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой гармоники на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, отличающийся тем, что на каждом периоде входного моногармонического сигнала определяют коэффициенты Фурье n≥1 дополнительных гармоник выходного периодического сигнала, отличных от исследуемой, и определяют средние значения коэффициентов Фурье этих дополнительных гармоник за пройденное количество периодов входного моногармонического сигнала, проводят сравнение модулей отношений разности модулей средних значений каждого из коэффициентов Фурье дополнительных гармоник на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, при этом входной моногармонический сигнал подают на вход динамического объекта до тех пор, пока все определенные модули отношений для исследуемой и дополнительных гармоник не станут меньше этого наперед заданного точностного параметра, после чего определяют амплитуду исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала, определяют относительную амплитуду исследуемой гармоники выходного периодического сигнала как отношение амплитуды исследуемой гармоники выходного периодического сигнала к амплитуде входного моногармонического сигнала возбуждения, а также определяют фазовый сдвиг исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала.

Изобретение относится к области испытаний и исследований динамических систем и может найти применение в ракетно-космической, авиационной, станкостроительной, машиностроительной, электронной и других областях техники.

Известен способ определения амплитудно-фазовой частотной характеристики динамического объекта (см. Вавилов А.А., Солодовников А.И. Экспериментальное определение частотных характеристик автоматических систем. Москва - Ленинград: Государственное энергетическое издательство, 1963, стр.68-76, 93-103), заключающийся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении коэффициентов Фурье первой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала по известным соотношениям и определении амплитудо-частотной характеристики динамического объекта как зависимости от частоты входного моногармонического сигнала отношений амплитуды первой гармоники выходного периодического сигнала, определяемой по значениям коэффициентов Фурье на последнем периоде входного моногармонического сигнала по известному соотношению, к амплитуде входного моногармонического сигнала возбуждения, а также определении фазовой частотной характеристики, как зависимости от частоты входного моногармонического сигнала фазового сдвига первой гармоники выходного периодического сигнала относительно входного моногармонического сигнала, определяемого по значениям коэффициентов Фурье на последнем периоде входного моногармонического сигнала по известному соотношению в режиме установившихся периодических колебаний.

Недостатком этого способа определения амплитудно-фазовой частотной характеристики динамического объекта является его большая продолжительность, так как заранее неизвестно время окончания переходного процесса втягивания динамического объекта в периодические колебания. Кроме этого, некоторые нелинейные динамические объекты не имеют установившихся периодических колебаний на выходе при моногармоническом возбуждении. Поэтому при исследовании или испытании таких объектов даже самый длительный эксперимент может приводить к большим неточностям определения частотных характеристик, так как для таких объектов речь может идти только об определении усредненных частотных характеристик.

Известен способ определения амплитудно-фазовой частотной характеристики динамического объекта - прототип (см. Методы расчета частотных характеристик систем управления вектором тяги ракетных двигателей / О.Б. Белоногов [и др.] // Ракетно-космическая техника. Сер.XII. 1998. Сер.XII. Вып.3-4, стр.259-284), заключающийся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении шага разбиения периода входного моыогармонического сигнала по времени и числа значений ординат выходного периодического сигнала в зависимости от частоты, определении коэффициентов Фурье исследуемой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала, определении средних значений коэффициентов Фурье исследуемой гармоники за пройденное количество периодов входного моногармонического сигнала, проведении сравнения модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой гармоники на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, и когда все определенные модули отношений станут меньше этого наперед заданного точностного параметра определении амплитуды исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала, определении относительной амплитуды исследуемой гармоники выходного периодического сигнала как отношения амплитуды исследуемой гармоники выходного периодического сигнала, к амплитуде входного моногармонического сигнала возбуждения, а также определении фазового сдвига исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала.

Этот способ существенно сокращает продолжительность исследований или испытаний и позволяет более точно определять амплитудно-фазовые частотные характеристики любых гармоник динамических объектов, в том числе и тех динамических объектов, которые не имеют установившихся периодических колебаний на выходе при моногармоническом возбуждении. Однако, точность определения амплитудно-фазовых частотные характеристик и при этом способе недостаточна потому, что переходный процесс втягивания динамического объекта в вынужденные периодические колебания заканчивается только тогда, когда средние значения коэффициентов Фурье и соответствующих им амплитуды и фазового сдвига всех составляющих гармоник выходного сигнала становятся достаточно постоянными. Но такой подход к построению способа определения частотных характеристик динамического объекта в принципе невозможен, так как число составляющих гармоник выходного периодического сигнала бесконечно. Тем не менее, точность способа может быть повышена, если при анализе помимо исследуемой гармоники использовать несколько близких к ней наиболее значимых гармоник.

Техническим результатом изобретения является повышение точности определения амплитудно-фазовых частотных характеристик динамического объекта.

Технический результат достигается тем, что в известном способе определения амплитудно-фазовой частотной характеристики динамического объекта, заключающемся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении шага разбиения периода входного моногармонического сигнала по времени и числа значений ординат выходного периодического сигнала в зависимости от частоты, определении коэффициентов Фурье исследуемой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала, определении средних значений коэффициентов Фурье исследуемой гармоники за пройденное количество периодов входного моногармонического сигнала, проведении сравнения модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой гармоники на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, при этом в отличие от известного способа, на каждом периоде входного моногармонического сигнала определяют коэффициенты Фурье n≥1 дополнительных гармоник выходного периодического сигнала, отличных от исследуемой и определяют средние значения коэффициентов Фурье этих дополнительных гармоник за пройденное количество периодов входного моногармонического сигнала, проводят сравнение модулей отношений разности модулей средних значений каждого из коэффициентов Фурье дополнительных гармоник на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, при этом входной моногармонический сигнал подают на вход динамического объекта до тех пор, пока все определенные модули отношений для исследуемой и дополнительных гармоник не станут меньше этого наперед заданного точностного параметра, после чего определяют амплитуду исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала, определяют относительную амплитуду исследуемой гармоники выходного периодического сигнала как отношение амплитуды исследуемой гармоники выходного периодического сигнала к амплитуде входного моногармонического сигнала возбуждения, а также определяют фазовый сдвиг исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моыогармонического сигнала.

При таком способе определения амплитудно-фазовой частотной характеристики анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится не только по исследуемой гармонике, но и по нескольким дополнительным гармоникам. Для достижения достаточного постоянства коэффициентов Фурье и соответствующих им амплитуды и фазового сдвига исследуемой и дополнительных гармоник выходного периодического сигнала на каждой из частот входного моногармонического сигнала необходимо различное число пройденных периодов. В этом случае окончание переходного процесса втягивания динамического объекта в вынужденные периодические колебания определяется числом необходимых периодов для завершения переходного процесса той гармоники, для которой оно является максимальным. Это оказывает влияние на значения определяемых относительной амплитуды и фазового сдвига исследуемой гармоники выходного периодического сигнала динамического объекта. Таким образом, это приводит к повышению точности определения амплитудно-фазовых частотных характеристик исследуемой гармоники динамического объекта.

Так как заявленная совокупность существенных признаков способа позволяет обеспечить технический результат, то заявленный способ соответствует критерию "изобретательский уровень".

Суть способа поясняется с помощью чертежа, на котором изображена блок-схема экспериментальной установки для определения амплитудно-фазовых частотных характеристик динамического объекта. В качестве примера реализации заявленного способа рассмотрим способ определения амплитудно-фазовой частотной характеристики первой гармоники динамического объекта, в соответствие с которым анализу подвергаются дополнительно вторая и третья гармоники его выходного периодического сигнала.

Экспериментальная установка, изображенная на чертеже, включает в себя испытуемый динамический объект 1, генератор (синтезатор) входного моногармонического сигнала 2, регистратор 3 входного моногармонического сигнала и выходного периодического сигнала динамического объекта и анализатор 4.

В качестве генератора (синтезатора) 2 входного моногармонического сигнала может быть использован, например, низкочастотный генератор периодических колебаний типа НГПК-4 или синтезатор-блок анализатора частотных характеристик FRA 1250 «Solartron», выпускаемый фирмой «Solartron Electroniks Groop Ltd.» [2].

В качестве регистратора 3 входного моногармонического сигнала и выходного периодического сигнала динамического объекта может быть использован многоканальный регистратор данных типа «Orion-4», также выпускаемый фирмой «Solartron Electroniks Groop Ltd.» или другой многоканальный аналого-цифровой преобразователь с требуемыми характеристиками.

В качестве анализатора 4 может быть использован персональный компьютер с соответствующим специальным программным обеспечением и необходимой для проведения вычислений в реальном режиме времени тактовой частотой его генератора.

При включении экспериментальной установки генератор (синтезатор) 2 вырабатывает моногармонический сигнал амплитудой Ау определенной частоты f(nf), где nf - номер частоты из заданных nfm частот, который подается на вход испытуемого динамического объекта 1 и в первый канал регистратора 3.

При этом на выходе испытуемого динамического объекта 1 возникает периодический сигнал, который поступает во второй канал регистратора 3. Регистратор 3 оцифровывает входной моногармонический сигнал и выходной периодический сигнал динамического объекта 1 и посылает их в анализатор 4.

Анализатор 4 с целью получения результатов с одинаковой точностью на каждой из фиксированных частот определяет значение шага h разбиения периода Т входного моногармонического сигнала по времени t по выражению [2]:

где Kf - коэффициент, величина которого определяет максимальное значение шага по времени на минимальной частоте входного моногармонического сигнала, обеспечивающего точность определения коэффициентов Фурье, и число значений ординат сигналов jm по выражению [2]:

jm=T/h.

Далее, анализатор 4 на каждом периоде входного моногармонического сигнала определяет его амплитуду, коэффициенты Фурье первой гармоники выходного периодического сигнала и двух его дополнительных гармоник - второй и третьей по известным соотношениям [2]

где P1, P2, Р3 - действительные составляющие (действительные коэффициенты Фурье) 1-й, 2-й и 3-й гармоник выходного периодического сигнала соответственно;

Q1, Q2, Q3 - мнимые составляющие (мнимые коэффициенты Фурье) 1-й, 2-й и 3-й гармоник выходного периодического сигнала соответственно;

Uп - выходной периодический сигнал динамического объекта;

i - номер периода частоты входного моногармонического сигнала;

t - значение текущего времени.

Проводится определение средних значений коэффициентов Фурье исследуемой и дополнительной гармоник выходного периодического сигнала за пройденное количество периодов входного моногармонического сигнала:

где n - значение номера последнего периода входного моногармонического сигнала.

Проводится сравнение модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой и дополнительных гармоник на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром ε:

Значение точностного параметра ε, умноженное на 100% (ε×100%), показывает точность определения амплитудно-фазовой частотной характеристики динамического объекта в процентах. Выбор значения точностного параметра является предметом оптимизации для конкретного динамического объекта, зависит от его физико-технических свойств, их изменчивости во времени при функционировании динамического объекта и на практике определяется экспериментально.

Если все неравенства (14)-(19) выполняются, тогда:

- определяют амплитуду исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала:

- определяют относительную амплитуду исследуемой гармоники выходного периодического сигнала как отношение амплитуды исследуемой гармоники выходного периодического сигнала к амплитуде входного моногармонического сигнала возбуждения:

определяют фазовый сдвиг исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала:

Далее, генератор (синтезатор) 2 последовательно переключают на следующую частоту f(nf) из заданных nf частот и описанный выше цикл действий повторяется на каждой частоте.

При необходимости, в рамках данного способа, кроме относительной амплитуды и фазового сдвига исследуемой гармоники выходного периодического сигнала динамического объекта на каждой частоте f(nf) входного моногармонического сигнала могут быть определены относительные амплитуды и фазовые сдвиги его дополнительных гармоник.

Таким образом, вследствие того что анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится не только по исследуемой гармонике, но и по нескольким дополнительным гармоникам, повышается точность определения амплитудно-фазовой частотной характеристики динамического объекта.

Литература

1. Вавилов А.А., Солодовников А.И. Экспериментальное определение частотных характеристик автоматических систем. Москва - Ленинград: Государственное энергетическое издательство, 1963. Стр.68-76, 93-103.

2. Методы расчета частотных характеристик систем управления вектором тяги ракетных двигателей / О.Б. Белоногов [и др.] // Ракетно-космическая техника. Сер.XII. 1998. Сер.XII. Вып.3-4. Стр.259-284 - прототип.

Способ определения амплитудно-фазовой частотной характеристики динамического объекта, заключающийся в подаче на вход динамического объекта моногармонического сигнала возбуждения на заданных частотах, регистрации на каждой заданной частоте входного моногармонического сигнала возбуждения и выходного периодического сигнала динамического объекта, определении шага разбиения периода входного моногармонического сигнала по времени и числа значений ординат выходного периодического сигнала в зависимости от частоты, определении коэффициентов Фурье исследуемой гармоники выходного периодического сигнала на каждом периоде входного моногармонического сигнала, определении средних значений коэффициентов Фурье исследуемой гармоники за пройденное количество периодов входного моногармонического сигнала, проведении сравнения модулей отношений разности модулей средних значений каждого из коэффициентов Фурье исследуемой гармоники на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, отличающийся тем, что на каждом периоде входного моногармонического сигнала определяют коэффициенты Фурье n≥1 дополнительных гармоник выходного периодического сигнала, отличных от исследуемой, и определяют средние значения коэффициентов Фурье этих дополнительных гармоник за пройденное количество периодов входного моногармонического сигнала, проводят сравнение модулей отношений разности модулей средних значений каждого из коэффициентов Фурье дополнительных гармоник на последнем и предпоследнем периоде входного моногармонического сигнала к модулю этого коэффициента на последнем периоде входного моногармонического сигнала с наперед заданным точностным параметром, при этом входной моногармонический сигнал подают на вход динамического объекта до тех пор, пока все определенные модули отношений для исследуемой и дополнительных гармоник не станут меньше этого наперед заданного точностного параметра, после чего определяют амплитуду исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала, определяют относительную амплитуду исследуемой гармоники выходного периодического сигнала как отношение амплитуды исследуемой гармоники выходного периодического сигнала к амплитуде входного моногармонического сигнала возбуждения, а также определяют фазовый сдвиг исследуемой гармоники выходного периодического сигнала по средним значениям коэффициентов Фурье исследуемой гармоники на последнем периоде входного моногармонического сигнала.
СПОСОБ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ФАЗОВОЙ ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ ДИНАМИЧЕСКОГО ОБЪЕКТА
Источник поступления информации: Роспатент

Showing 121-130 of 370 items.
20.03.2015
№216.013.3467

Способ измерения пространственного распределения теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала....
Тип: Изобретение
Номер охранного документа: 0002544890
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3468

Способ определения комплекса теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева...
Тип: Изобретение
Номер охранного документа: 0002544891
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.346b

Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта....
Тип: Изобретение
Номер охранного документа: 0002544894
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3552

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков, стыковочными механизмами, направляющими узлами со штырем с заходным конусом и гнездом с...
Тип: Изобретение
Номер охранного документа: 0002545134
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.38da

Посадочное устройство космического аппарата

Изобретение относится к ракетно-космической технике и может быть использовано в посадочных устройствах (ПУ) космических аппаратов (КА). ПУ КА содержит стойку, состоящую из стакана с внутренним амортизирующим элементом, соединенного с цилиндрическим шарниром и телескопически с подвижным штоком,...
Тип: Изобретение
Номер охранного документа: 0002546042
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.38f5

Дипольная антенна

Изобретение относится к антенной технике, в частности к дипольным антеннам с отражающим экраном с полунаправленной диаграммой направленности, и может быть использовано в технике связи для приема сигналов навигационных систем и для организации приемо-передающего канала с Землей в...
Тип: Изобретение
Номер охранного документа: 0002546069
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3db6

Система контроля скорости космических аппаратов при сближении

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов (КА), а именно к оптико-электронным системам контроля скорости. Система контроля скорости космических аппаратов при сближении включает расположенные на активном космическом...
Тип: Изобретение
Номер охранного документа: 0002547286
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4012

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (KA), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547890
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4016

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547894
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4017

Способ определения альбедо земной поверхности

Изобретение относится к космической технике. Способ определения альбедо земной поверхности включает развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной...
Тип: Изобретение
Номер охранного документа: 0002547895
Дата охранного документа: 10.04.2015
Showing 121-130 of 295 items.
27.02.2015
№216.013.2d73

Ионный двигатель

Изобретение относится к энергетике. Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет торообразную форму, причем...
Тип: Изобретение
Номер охранного документа: 0002543103
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ed0

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус (1), установленные внутри него электродвигатель (5), датчик (6) углового положения, связанный с выходным валом электропривода, и...
Тип: Изобретение
Номер охранного документа: 0002543452
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ee9

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков и стыковочными механизмами, пружинные толкатели, штыри с заходными конусами, гнезда с...
Тип: Изобретение
Номер охранного документа: 0002543477
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f1b

Способ измерения скорости движения объектов по их телевизионным изображениям

Изобретение относится к области прикладного телевидения с использованием регистрации излученного или отраженного лучистого потока от объектов в разных зонах оптического спектра для решения задач контроля и анализа состояния объектов по их телевизионным (ТВ) изображениям. Изобретение может найти...
Тип: Изобретение
Номер охранного документа: 0002543527
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f37

Трехканальный релейный коммутатор

Изобретение относится к электронным устройствам автоматики. Технический результат заключается в повышении надежности и помехоустойчивости. Устройство содержит: три входа, первый из которых через параллельно соединенные первую и вторую обмотки реле подключен к источнику питания, второй вход...
Тип: Изобретение
Номер охранного документа: 0002543555
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3252

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе ее сборки на соответствие техническим требованиям....
Тип: Изобретение
Номер охранного документа: 0002544357
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3467

Способ измерения пространственного распределения теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала....
Тип: Изобретение
Номер охранного документа: 0002544890
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3468

Способ определения комплекса теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева...
Тип: Изобретение
Номер охранного документа: 0002544891
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.346b

Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта....
Тип: Изобретение
Номер охранного документа: 0002544894
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3552

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков, стыковочными механизмами, направляющими узлами со штырем с заходным конусом и гнездом с...
Тип: Изобретение
Номер охранного документа: 0002545134
Дата охранного документа: 27.03.2015
+ добавить свой РИД