×
20.11.2013
216.012.8326

Результат интеллектуальной деятельности: СПОСОБ АНАЛИЗА МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СРЕД

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитического приборостроения и может быть использовано для анализа состава многокомпонентных газовых сред. Облучают анализируемую газовую среду лазерным линейно-поляризованным монохроматическим излучением и последовательно регистрируют два спектра комбинационного рассеяния света J(2) и J(λ). Для первого электрический вектор рассеянного света параллелен электрическому вектору возбуждающего лазерного излучения, а для второго ортогонален. По изотропному спектру рассеяния, полученному из условия , где f(λ) - представляет собой отношение спектрального коэффициента пропускания аппаратурой излучения, электрический вектор которого параллелен электрическому вектору возбуждающего лазерного излучения, к аналогичному коэффициенту пропускания для ортогональной поляризации, определяют состав анализируемой среды. Изобретение обеспечивает возможность идентификации большего количества компонент исследуемой газовой среды и, соответственно, повышение достоверности анализа. 3 ил.
Основные результаты: Способ анализа многокомпонентных газовых сред, включающий облучение анализируемой газовой среды лазерным линейно-поляризованным монохроматическим излучением, отличающийся тем, что последовательно регистрируются два спектра комбинационного рассеяния света J(λ) и J(λ), для первого из которых электрический вектор рассеянного света параллелен электрическому вектору возбуждающего лазерного излучения, а для второго электрический вектор ортогонален, и по спектру, полученному из условия , где f(λ) представляет собой отношение спектрального коэффициента пропускания аппаратурой излучения, электрический вектор которого параллелен электрическому вектору возбуждающего лазерного излучения, к аналогичному коэффициенту пропускания для ортогональной поляризации, определяют состав анализируемой среды.

Изобретение относится к области аналитического приборостроения и может быть использовано для анализа состава многокомпонентных газовых сред.

Идентификация состава сложных газовых сред является актуальной задачей в области контроля за технологическими процессами в производстве и теплоэнергетике, а также важна для экологического контроля за выбросами в атмосферу загрязняющих газов. Для решения этой задачи используются различные физико-химические методы газоанализа, среди которых одними из наиболее точных и надежных являются оптические спектроскопические методы. Однако известные в настоящее время способы анализа не всегда удовлетворяют исследователей и разработчиков газоанализаторов.

Известен способ анализа, основанный на лазерной абсорбционной спектроскопии [Лазерная аналитическая спектроскопия / B.C. Антонов, Г.И. Беков, М.А. Большов и д.р. М.: Наука, 1986. - 318 с.]. Его суть заключается в направлении лазерного излучения на газовую среду и измерении его интенсивности до прохождения газовой среды и после. По величине поглощенной энергии лазерного излучения судят о наличии и концентрации измеряемого компонента. Основным недостатком данного метода является необходимость иметь либо лазер с возможностью плавной перестройки в широком диапазоне длин волн генерации, либо вообще несколько лазеров. Данное обстоятельство, как правило, делает невозможным контроль сложных многокомпонентных газовых сред.

Наиболее близким по принципу действия является способ анализа, заключающийся в облучении газовой среды лазерным линейно-поляризованным монохроматическим излучением и регистрацией спектра комбинационного рассеяния света (КРС) [Булдаков М.А., Матросов И.И., Тихомиров А.А. Современное состояние и тенденции развития газоаналитического приборостроения для контроля промышленных выбросов в атмосферу // Оптика атмосферы и океана 2009, Т.22, №1, С.52-57]. По характерным зарегистрированным колебательным полосам полученного спектра судят о составе анализируемой среды. Данный метод требует только одного лазера с фиксированной длиной волны и соответственно лишен недостатков описанного выше метода. Кроме того, основным его преимуществом является «экспрессность» анализа при одновременном контроле всех без исключения молекулярных составляющих газовой среды. Однако при анализе сложных многокомпонентных сред (например, природный газ) происходит спектральное перекрывание полос от разных компонентов, что затрудняет их идентификацию.

Задачей, на решение которой направлено изобретение, является получение более информативного спектра КРС. Технический результат - возможность идентификации большего количества компонент исследуемой газовой среды и соответственно повышение достоверности анализа.

Указанный результат достигается тем, что, как и в прототипе, происходит облучение анализируемой газовой среды лазерным линейно-поляризованным монохроматическим излучением. Но, в отличие от прототипа, последовательно регистрируется два спектра КРС J||(λ) и J(λ). Для первого электрический вектор рассеянного света параллелен электрическому вектору возбуждающего лазерного излучения, а для второго ортогонален. По изотропному спектру рассеяния, полученному из условия где f(λ) - представляет собой отношение спектрального коэффициента пропускания аппаратурой излучения, электрический вектор которого параллелен электрическому вектору возбуждающего лазерного излучения, к аналогичному коэффициенту пропускания для ортогональной поляризации, определяют состав анализируемой среды.

Предлагаемый способ основан на том, что интенсивность колебательно-вращательных полос в спектре КРС любого компонента газовой среды вдали от резонанса состоит из двух составляющих: спектров изотропного и анизотропного рассеяний. В соответствии с правилами отбора для колебательно-вращательных полос в спектре КРС [Вебер А. Спектроскопия комбинационного рассеяния высокого разрешения газов // Применение спектров комбинационного рассеяния / Ред. А. Андерсен. М.: Мир, 1977. - С.144-354] спектр анизотропного рассеяния имеет значительно более сложную и разветвленную структуру, чем спектр изотропного рассеяния, состоящий только из узких Q-ветвей колебательных полос. В случае многокомпонентной газовой среды изотропные и анизотропные части спектров КРС различных компонентов среды перекрываются, маскируя друг друга и создавая трудности (препятствуя) в определении ее состава методом спектроскопии КРС. Поэтому выделение спектра изотропного рассеяния из всего спектра КРС позволит значительно упростить вид спектра и соответственно повысить точность определения состава газовой среды.

Непосредственно выделение изотропного спектра рассеяния основывается на следующем. Любой зарегистрированный спектр КРС равен произведению истинного спектра КРС помноженного на коэффициент пропускания аппаратурой света соответствующей поляризации. Так, после регистрации двух спектров КРС с разными поляризациями имеет место система

где Ji(λ) - истинный спектр изотропного рассеяния, - истинный спектр анизотропного рассеяния, для которого электрический вектор параллелен (ортогонален) электрическому вектору возбуждающего лазерного излучения, K||(λ) (K(λ)) - спектральный коэффициент пропускания аппаратурой излучения, электрический вектор которого параллелен (ортогонален) электрическому вектору возбуждающего лазерного излучения.

Известно, что для компонентов спектра КРС обусловленных только анизотропным рассеянием (полностью деполяризованные участки спектра) выполняется условие

С учетом этого и второго уравнения системы (1) можно записать

Таким образом, подставляя (3) в первое уравнение системы (1) его можно записать в виде

Обращая внимание, что правая часть данного равенства представляет собой регистрируемую аппаратурой изотропную часть спектра КРС анализируемой среды, и обозначая , можно получить необходимое условие

.

На фиг.1 изображена схема устройства для осуществления предлагаемого способа (1 - лазер, 2 - фокусирующая линза, 3 - кювета наполняемая исследуемым газом, 4 - фотообъектив для сбора рассеянного света, 5 - поляризатор, 6 - спектральный прибор). На фиг.2 изображен спектр КРС природного газа полученный стандартным методом, например с помощью прототипа. На фиг.3 продемонстрирован спектр этого же газа, но зарегистрированный с помощью предлагаемого способа. Из сопоставления фиг.2 и фиг.3 видно, что применение данного способа позволяет выделить некоторые компоненты газовой среды, которые до этого были перекрыты другими более интенсивными полосами. Хорошим примером, в данном случае, может послужить углекислый газ (СО2), наличие которого отчетливо наблюдается на фиг.3, зарегистрированного предлагаемым способом.

Способ осуществляется следующим образом. Возбуждающее линейно-поляризованное излучение от лазера 1 фокусируется линзой 2 в центр кюветы 3 наполненной анализируемой газовой средой. Рассеянное излучение из центра кюветы под углом 90 градусов к возбуждающему излучению собирается объективом 4 и направляется на вход спектрального прибора 6. Перед последним установлен поляризатор 5, который обеспечивает пропускание света определенной поляризации. Так, сначала регистрируется спектр КРС с поляризацией когда электрический вектор параллелен электрическому вектору возбуждающего света J||(λ), после чего регистрируется спектр КРС с ортогональной поляризацией J(λ). После этого из первого зарегистрированного спектра вычитается второй помноженный на 4/3 и на функцию f(λ), которая представляет собой отношение спектрального коэффициента пропускания аппаратурой света, электрический вектор которого параллелен электрическому вектору возбуждающего света, к аналогичному коэффициенту пропускания для ортогональной поляризации. В итоге получается спектр КРС , состоящий только из изотропного рассеяния компонентов анализируемой газовой среды. Далее по частотам зарегистрированных Q-ветвей определяется состав анализируемой газовой среды.

Данные частоты известны и приведены в различных справочниках, например в [Шреттер X., Клекнер X. Сечения комбинационного рассеяния в газах и жидкостях // Спектроскопия комбинационного рассеяния света в газах и жидкостях / Ред. А. Вебер. М.: Мир, 1982. - С.154-202].

Способ анализа многокомпонентных газовых сред, включающий облучение анализируемой газовой среды лазерным линейно-поляризованным монохроматическим излучением, отличающийся тем, что последовательно регистрируются два спектра комбинационного рассеяния света J(λ) и J(λ), для первого из которых электрический вектор рассеянного света параллелен электрическому вектору возбуждающего лазерного излучения, а для второго электрический вектор ортогонален, и по спектру, полученному из условия , где f(λ) представляет собой отношение спектрального коэффициента пропускания аппаратурой излучения, электрический вектор которого параллелен электрическому вектору возбуждающего лазерного излучения, к аналогичному коэффициенту пропускания для ортогональной поляризации, определяют состав анализируемой среды.
СПОСОБ АНАЛИЗА МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СРЕД
СПОСОБ АНАЛИЗА МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СРЕД
СПОСОБ АНАЛИЗА МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СРЕД
СПОСОБ АНАЛИЗА МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СРЕД
Источник поступления информации: Роспатент

Showing 21-22 of 22 items.
20.01.2018
№218.016.18c1

Способ измерения энергии излучения инфракрасного и терагерцового диапазонов

Изобретение относится к области измерительной техники и касается способа измерения энергии излучения инфракрасного и терагерцового диапазонов. Способ включает в себя введение излучения в герметичную камеру, заполненную газом, и измерение величины нагрева газа, обусловленного поглощением...
Тип: Изобретение
Номер охранного документа: 0002636138
Дата охранного документа: 20.11.2017
25.08.2018
№218.016.7ee7

Способ дистанционного определения условий обледенения воздушных судов на основе радиометрии реального времени

Изобретение относится к области метеорологии и может быть использовано для определения зон возможного обледенения воздушных судов в режиме реального времени. Для этого в заданном районе наблюдения вначале регистрируют несколько фактических значений общего влагосодержания, затем регистрируют...
Тип: Изобретение
Номер охранного документа: 0002664972
Дата охранного документа: 24.08.2018
Showing 21-28 of 28 items.
20.01.2018
№218.016.18c1

Способ измерения энергии излучения инфракрасного и терагерцового диапазонов

Изобретение относится к области измерительной техники и касается способа измерения энергии излучения инфракрасного и терагерцового диапазонов. Способ включает в себя введение излучения в герметичную камеру, заполненную газом, и измерение величины нагрева газа, обусловленного поглощением...
Тип: Изобретение
Номер охранного документа: 0002636138
Дата охранного документа: 20.11.2017
10.05.2018
№218.016.4642

Анализатор состава природного газа

Изобретение относится к области измерительной техники. Анализатор состава природного газа содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным и боковым окном, фотообъектив, голографический фильтр, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления,...
Тип: Изобретение
Номер охранного документа: 0002650363
Дата охранного документа: 11.04.2018
14.11.2018
№218.016.9d37

Анализатор состава природного газа

Изобретение относится к области измерительной техники и касается анализатора состава природного газа. Анализатор содержит непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, ловушку лазерного излучения, два объектива, голографический фильтр,...
Тип: Изобретение
Номер охранного документа: 0002672183
Дата охранного документа: 12.11.2018
14.11.2018
№218.016.9d60

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор включает в себя непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, оснащенной двумя окнами для пропускания...
Тип: Изобретение
Номер охранного документа: 0002672187
Дата охранного документа: 12.11.2018
08.05.2019
№219.017.4904

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается КР-газоанализатора. Газоанализатор включает в себя непрерывный лазер, газовую кювету, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным...
Тип: Изобретение
Номер охранного документа: 0002686874
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5dbe

Способ газоанализа природного газа

Изобретение относится к области аналитического приборостроения и касается способа газоанализа природного газа (ПГ). При осуществлении способа производят однократную регистрацию спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов, входящих в состав ПГ....
Тип: Изобретение
Номер охранного документа: 0002688886
Дата охранного документа: 22.05.2019
10.07.2019
№219.017.b1b8

Регистрирующая кювета для фототермоакустического газоанализатора

Изобретение относится к измерительной технике и может быть использовано для количественного определения энергии падающего ИК-излучения в составе фототермоакустического газоанализатора. Кювета состоит из герметичной камеры, наполненной газом, поглощающим оптическое излучение. На противоположных...
Тип: Изобретение
Номер охранного документа: 0002460990
Дата охранного документа: 10.09.2012
20.04.2023
№223.018.4ce1

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор содержит лазер, газовую кювету, два линзовых объектива, предназначенных для сбора рассеянного излучения, между которыми установлен светофильтр, блокирующий излучение в...
Тип: Изобретение
Номер охранного документа: 0002755635
Дата охранного документа: 17.09.2021
+ добавить свой РИД