×
24.05.2019
219.017.5dbe

Результат интеллектуальной деятельности: Способ газоанализа природного газа

Вид РИД

Изобретение

№ охранного документа
0002688886
Дата охранного документа
22.05.2019
Аннотация: Изобретение относится к области аналитического приборостроения и касается способа газоанализа природного газа (ПГ). При осуществлении способа производят однократную регистрацию спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов, входящих в состав ПГ. Затем регистрируют спектр СКР анализируемого ПГ и вычисляют вклады спектров СКР эталонных молекулярных газовых компонентов. Полученные результаты нормируют. Затем по величинам сдвига положения максимума полосы метана, находящейся вблизи 2917 см, определяют концентрацию входящего в состав ПГ гелия. На основе вычисленных нормированных результатов и полученной концентрации гелия определяют концентрации молекулярных компонентов. Технический результат заключается в повышении точности измерений. 3 ил.

Изобретение относится к области аналитического приборостроения и предназначено для компонентного анализа природного газа (ПГ) и газовых смесей на его основе.

Химический состав ПГ существенно различается в зависимости от его месторождения. Наряду с этим изменяется его теплотворная способность, а, следовательно, и стоимость. По этой причине определение с высокой степенью точности состава ПГ является для предприятий занимающихся его добычей и транспортировкой весьма актуальной задачей.

Наиболее распространенным методом определения химического состава ПГ, на сегодняшний день, является хроматографический анализ [Бузановский В.А., Овсепян А.М. Информационно-измерительные системы состава и свойств природного газа // Территория Нефтегаз, 2007, №8, С. 36-43]. Основными недостатками данного метода является относительно большое время анализа, необходимость иметь расходные материалы в виде газа-носителя (например, Не или Аr), необходимого для осуществления газохроматографического разделения, а также деградация со временем характеристик основных узлов (детекторов, колонок) и, связанная с этим, необходимость в периодической поверке градуировки прибора.

От перечисленных выше недостатков свободны оптические методы анализа состава природного газа. В частности, известен способ, основанный на лазерной абсорбционной спектроскопии [RU 2441219, 27.01.2012]. Однако данный способ имеет ряд собственных недостатков. В первую очередь к ним относится необходимость предварительной информации о составе анализируемого газа, а также необходимость иметь несколько лазеров работающих в различных диапазонах длин волн, что в итоге ведет к существенному удорожанию газоанализатора. Кроме того, данным способом невозможно определить концентрацию гелия и гомоядерных молекул (например, N2, Н2 и т.д.) входящих в состав ПГ, определение содержания которых принципиально важно.

Также известен способ анализа, основанный на использовании спектроскопии спонтанного комбинационного рассеяния света (СКР) [Бажанов Ю.В. и др. Количественный анализ газовых сред методом спектроскопии комбинационного рассеяния света // Аналитика и контроль, 1998, №3-4, С. 5-74]. Основным его преимуществом является отсутствие расходных материалов, а также контроль всех молекулярных составляющих природного газа с помощью одного лазера с фиксированной длиной волны. Суть данного метода заключается в облучении анализируемого ПГ линейно поляризованным монохроматическим излучением и одновременной регистрации его спектра СКР в диапазоне 0-4200 см-1, куда попадают полосы всех молекул. Далее процесс сводится к следующему. Составляется система уравнений где j - номер спектрального компонента, k - номер пиксела, - вклад j-го компонента в интенсивность регистрируемую k-м пикселом, dj - коэффициент сочетающий в себе сечение рассеяния j-го компонента σj, и аппаратную функцию пропускания оптических элементов, n - абсолютная концентрация молекул того сорта, частоте колебаний которого соответствует данная спектральная компонента, ik - интенсивность зарегистрированная k-м пикселом, - величина фона, J - интенсивность возбуждающего излучения. Данная система избыточна, поскольку имеет число уравнений равное общему числу пикселов, и число неизвестных равное полному числу компонент природного газа N. Поэтому из нее выделяют подсистему с N уравнениями, каждое из которых соответствует пикселу регистрирующему максимум одной из спектральных линий. Интенсивность возбуждающего излучения исключается путем перехода к относительным концентрациям и нормировке их суммы на 100%.

Основным недостатком данного подхода является необходимость в знании сечений рассеяния σj компонентов на выбранных пикселях с очень высокой точностью, что является весьма нетривиальной задачей. Помимо этого, данный способ не позволяет корректно учесть случайные флуктуации световых сигналов, что приводит к низкой точности анализа.

Наиболее близким по принципу действия является способ [RU 2544264, 20.03.2015]. Он также основан на спектроскопии спонтанного комбинационного рассеяния света, однако, в отличие от способа описанного выше, до регистрации спектров СКР анализируемых образцов ПГ однократно регистрируются m спектров СКР эталонных газовых компонентов, входящих в состав ПГ, совместно с интегральной интенсивностью облучающего лазерного излучения Ii, i=1..m. Для получения относительных концентраций компонентов анализируемого ПГ регистрируется его спектр СКР из которого требуемые величины определяются по формуле , где аi - вклады спектров СКР эталонных газовых компонентов в зарегистрированный спектр СКР ПГ Jpix вычисленные с помощью метода наименьших квадратов из системы уравнений (pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1), Ni - величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, Pi, Тi - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Zi(Pii) -коэффициент сжимаемости газа i при давлении Pi и температуре Ti.

Основным недостатком данного способа является невозможность определения гелия в анализируемом ПГ. Это объясняется тем, что гелий не имеет спектра СКР, поскольку является не молекулярным, а атомарным газом. В свою очередь, неучет его содержания автоматически вносит погрешность в определяемые значения концентраций других компонентов, поскольку в указанном способе осуществляется нормировка вычисленных концентраций на 100%.

Задачей, на решение которой направлено изобретение, является создание способа газоанализа природного газа, основанного на спектроскопии СКР, позволяющего определять содержание как молекулярных компонентов ПГ, так и гелия. Технический результат -повышение точности измерений концентраций компонентов природного газа.

Указанный результат достигается следующим образом.

Осуществляется однократная регистрация спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов входящих в состав ПГ в диапазоне 0-4200 см-1, после этого в аналогичных условиях регистрируется спектр СКР анализируемого ПГ Jpix из которого вычисляются вклады ai спектров СКР эталонных молекулярных газовых компонентов с помощью метода наименьших квадратов из системы уравнений (pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1) и осуществляется их нормировка на 100% по формуле , где m - количество определяемых молекулярных газовых компонентов, Ii - интегральная интенсивность облучающего лазерного излучения при регистрации спектров эталонных газов i, Ni -величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, Pi, Тi - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Zi(Pi,Ti) -коэффициент сжимаемости газа i при давлении Pi и температуре Ti

На первом этапе, как и в прототипе, производится однократная регистрация спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов входящих в состав ПГ в диапазоне 0-4200 см-1. После этого в аналогичных условиях регистрируется спектр СКР анализируемого ПГ Jpix из которого вычисляются вклады ai спектров СКР эталонных молекулярных газовых компонентов с помощью метода наименьших квадратов из системы уравнений где m - количество определяемых молекулярных газовых компонентов, a pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1. После этого осуществляется нормировка полученных значений на 100% по формуле , где Ii - интегральная интенсивность облучающего лазерного излучения при регистрации эталонных спектров, N, - величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, Pi, Тi - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Zi(Pi,Ti) -коэффициент сжимаемости газа i при давлении Рi и температуре Тi. На втором этапе после вычисления значений bi, в анализируемой пробе ПГ определяется концентрация гелия (хНе) согласно соотношению , где νexp - положение максимума полосы метана находящейся вблизи частоты 2917 см-1 в зарегистрированном спектре СКР ПГ, ν0 - значение частоты данной полосы в чистом метане, di и dHe - величины сдвига данной полосы в результате присутствия в анализируемом ПГ компонентов i (i=1..m) и гелия приходящиеся на 1%. После этого вычисляются концентрации молекулярных компонентов (Xi) по формуле .

Предлагаемый способ основан на том, что положение полосы метана, расположенной вблизи 2917 см-1, имеет строгую зависимость от состава среды в которой находятся молекулы метана. В частности, в присутствии более тяжелых углеводородных соединений, таких как этан, пропан, бутан и т.п., данная полоса сдвигается в область меньших частот, а, к примеру, в окружении водорода или гелия данная полоса сдвигается в область больших частот. При этом величина сдвига практически линейно зависит от концентрации молекул каждого сорта. Таким образом, зная величину сдвига, которая приходится на единицу концентрации частиц (молекул и атомов) каждого сорта, а также их концентрации, можно вычислить положение указанной выше полосы метана. С другой стороны, поскольку гелий является доминирующим атомарным компонентом ПГ, зная положение данной полосы, концентрации всех молекулярных компонентов присутствующих в анализируемой пробе ПГ, а также величины сдвигов, приходящиеся на единицу концентрации для всех определяемых молекул, можно определить концентрацию гелия.

На фиг. 1 изображена схема устройства для осуществления предлагаемого способа (1 - лазер, 2 - светоделительная пластина, 3 - фотоприемник, 4 - линза, 5 - газовая кювета, 6 - манометр, 7 - измеритель температуры, 8 - ловушка лазерного излучения, 9 - объектив для сбора рассеянного света, 10 - светофильтр, 11 - спектральный прибор, 12 - электронный блок управления).

На фиг. 2 изображен спектр СКР полосы метана, расположенной в области 2917 см-1, в присутствии различных компонентов.

На фиг. 3 изображены зависимости положения данной полосы от типа окружающих частиц и их концентрации.

Способ осуществляется следующим образом. До проведения анализов образцов ПГ, единоразово, осуществляется регистрация спектров СКР отдельных компонентов природного газа i. Для этой цели возбуждающее линейно поляризованное излучение от лазера 1 попадает на светоделительную пластину 2, которая направляет часть излучения на фотоприемник 3, определяющий интегральную интенсивность излучения Ii в течение времени регистрации одного спектра. В свою очередь основная часть лазерного излучения фокусируется линзой 4 в центр кюветы 5 заполненной эталонным газовым компонентом i. Давление Pi и температура Тi газа в кювете контролируется манометром 6 и измерителем температуры 7 соответственно. Прошедшее сквозь кювету лазерное излучение поглощается ловушкой 8, а рассеянное излучение из центра кюветы под углом 90 градусов к возбуждающему излучению собирается объективом 9 и направляется сквозь светофильтр 10, ослабляющий свет на частоте лазерного излучения, на вход спектрального прибора 11 осуществляющего одновременную регистрацию спектра СКР в диапазоне 0-4200 см-1. Далее зарегистрированный спектр СКР эталонного газового компонента вместе с данными о его давлении и температуре при регистрации, а также с данными о соответствующей интегральной интенсивности возбуждающего излучения направляется в память электронного блока управления и согласно соотношению где k - коэффициент Больцмана, Zi(Pi,Ti) - коэффициент сжимаемости газа i при давлении Pi и температуре Тi вычисляется Ni - величина абсолютной концентрации молекул сорта i в его эталонном спектре. Данная процедура поочередно осуществляется для всех молекулярных компонентов природного газа.

После этого в кювету напускается анализируемый ПГ, проводится аналогичным образом регистрация его спектра СКР, за исключением того, что не контролируется его давление и температура, а также интенсивность возбуждающего излучения. В электронном блоке управления происходит вычисление предварительных относительных концентраций молекулярных компонентов bi анализируемого ПГ из его спектра СКР по формуле , где аi - вклады спектров СКР эталонных газовых компонентов в зарегистрированный спектр СКР ПГ Jpix вычисленные с помощью метода наименьших квадратов из системы уравнений где pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1.

После вычисления значений bj в анализируемой пробе ПГ определяется концентрация гелия (хНе) согласно соотношению , где νexp - положение максимума полосы метана находящейся вблизи частоты 2917 см-1 в зарегистрированном спектре СКР ПГ, ν0 - значение частоты данной полосы в чистом метане, di и dHe - величины сдвига данной полосы в результате присутствия в анализируемом ПГ компонентов i (i=1..m) и гелия приходящиеся на 1%. После этого вычисляются концентрации молекулярных компонентов (Xi) по формуле .

Коэффициенты ν0, di и dHe могут быть определены из экспериментальных данных, полученных с помощью используемого СКР-газоанализатора. В частности для определения v0 достаточно зарегистрировать спектр чистого метана. Для определения коэффициентов dj необходимо зарегистрировать спектры бинарных смесей (метан+компонент i) с известными концентрациями. Далее в каждом полученном спектре необходимо определить частоту полосы метана ν' расположенную вблизи 2917 см-1. Величина di будет эквивалентна отношению ν'-ν0 к величине относительной концентрации компонента i. Аналогичным способом из спектра смеси метана с гелием определяется величина dHe. Необходимо отметить, что для повышения точности определения положения указанной полосы метана может быть использована ее аппроксимация гауссовым контуром.

Способ газоанализа природного газа (ПГ), заключающийся в том, что осуществляют однократную регистрацию спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов, входящих в состав ПГ в диапазоне 0-4200 см, после этого в аналогичных условиях регистрируют спектр СКР анализируемого ПГ J из которого вычисляют вклады спектров СКР эталонных молекулярных газовых компонентов с помощью метода наименьших квадратов из системы уравнений (pix соответствует номерам элементов используемого многоканального фотоприемника, обеспечивающих регистрацию спектра в диапазонах 300-2500 см и 3400-3750 см) и осуществляется их нормировка на 100% по формуле , где m - количество определяемых молекулярных газовых компонентов, I - интегральная интенсивность облучающего лазерного излучения при регистрации спектров эталонных газов i, N - величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, P, T - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Z(P, T) - коэффициент сжимаемости газа i при давлении P и температуре T, отличающийся тем, что после вычисления значений b в анализируемой пробе ПГ определяют концентрацию гелия (x) согласно соотношению , где ν - положение максимума полосы метана, находящейся вблизи 2917 см в зарегистрированном спектре СКР ПГ, ν - значение положения данной полосы в чистом метане, d и d - величины сдвига данной полосы в результате присутствия в анализируемом ПГ компонента i и гелия, приходящиеся на 1%, а после этого вычисляют концентрации молекулярных компонентов (x) по формуле .
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Источник поступления информации: Роспатент

Showing 1-10 of 19 items.
25.08.2017
№217.015.bd00

Способ определения усредненных значений горизонтальной и вертикальной составляющих скорости ветра и его направления

Изобретение относится к области приборостроения, в частности к метеорологии, и может найти применение для определения усредненных значений вертикальных и горизонтальных составляющих скорости ветра и его направления. Технический результат – расширение функциональных возможностей. Для этого...
Тип: Изобретение
Номер охранного документа: 0002616352
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bf20

Способ определения усредненного вектора скорости ветра

Изобретение относится к измерительной технике и может найти применение для определения усредненного вектора скорости ветра. Технический результат – расширение функциональных возможностей. Для этого осуществляют запуск беспилотного летательного аппарата (БПЛА) мультироторного типа в заранее...
Тип: Изобретение
Номер охранного документа: 0002617020
Дата охранного документа: 19.04.2017
26.08.2017
№217.015.ed11

Фотоприемник для регистрации инфракрасного излучения в области 10,6 мкм

Изобретение относится к области измерительной техники и касается фотоприемника для регистрации инфракрасного излучения в области 10,6 мкм. Фотоприемник включает в себя герметичную наполненную газом камеру, оснащенную входным окном, прозрачным для измеряемого излучения, и блок электроники....
Тип: Изобретение
Номер охранного документа: 0002628675
Дата охранного документа: 21.08.2017
19.01.2018
№218.016.0ac5

Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата

Изобретение относится к области метеорологии и может быть использовано для определения направления и скорости ветра в вертикальном разрезе. Сущность: в интересующую область пространства запускают беспилотный летательный аппарат (БПЛА), для которого заранее определена калибровочная зависимость...
Тип: Изобретение
Номер охранного документа: 0002632270
Дата охранного документа: 03.10.2017
20.01.2018
№218.016.1416

Способ и устройство для измерения скорости ветра и температуры воздуха в атмосферном пограничном слое

Группа изобретений относится к метеорологии и может быть использована для измерения скорости ветра и температуры воздуха в атмосферном пограничном слое до высоты 2-3 км. Сущность: устройство содержит наземный модуль и размещенный на борту беспилотного летательного аппарата (БПЛА) высотный...
Тип: Изобретение
Номер охранного документа: 0002634804
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.18c1

Способ измерения энергии излучения инфракрасного и терагерцового диапазонов

Изобретение относится к области измерительной техники и касается способа измерения энергии излучения инфракрасного и терагерцового диапазонов. Способ включает в себя введение излучения в герметичную камеру, заполненную газом, и измерение величины нагрева газа, обусловленного поглощением...
Тип: Изобретение
Номер охранного документа: 0002636138
Дата охранного документа: 20.11.2017
10.05.2018
№218.016.4515

Способ определения усредненных значений горизонтальной и вертикальной составляющих скорости ветра и его направления

Изобретение относится к области метеорологии и может быть использовано для определения усредненных значений горизонтальной и вертикальной составляющих скорости ветра и его направления. Сущность: в интересующую область пространства запускают беспилотный летательный аппарат (БПЛА)...
Тип: Изобретение
Номер охранного документа: 0002650094
Дата охранного документа: 06.04.2018
14.11.2018
№218.016.9d37

Анализатор состава природного газа

Изобретение относится к области измерительной техники и касается анализатора состава природного газа. Анализатор содержит непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, ловушку лазерного излучения, два объектива, голографический фильтр,...
Тип: Изобретение
Номер охранного документа: 0002672183
Дата охранного документа: 12.11.2018
14.11.2018
№218.016.9d60

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор включает в себя непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, оснащенной двумя окнами для пропускания...
Тип: Изобретение
Номер охранного документа: 0002672187
Дата охранного документа: 12.11.2018
16.01.2019
№219.016.aff7

Способ измерения характеристик солнечного излучения многоэлементным датчиком

Изобретение относится к области метеорологии и касается способа измерения характеристик солнечного излучения. Способ основан на измерении максимальных и минимальных значений солнечной радиации с помощью датчика, имеющего как минимум два измерительных элемента, находящихся под маскирующим...
Тип: Изобретение
Номер охранного документа: 0002677075
Дата охранного документа: 15.01.2019
Showing 1-10 of 15 items.
10.02.2013
№216.012.244e

Эффективная оптическая система сбора рассеянного излучения для раман-спектрометра

Изобретение относится к области оптического приборостроения и может быть использовано в газовых раман-спектрометрах. Оптическая система сбора рассеянного излучения для раман-спектрометра содержит оптически связанные лазер и расположенные последовательно вдоль главной оптической оси...
Тип: Изобретение
Номер охранного документа: 0002474796
Дата охранного документа: 10.02.2013
10.09.2013
№216.012.68a3

Многоканальный высокоэффективный кр-спектрометр

Изобретение относится к области оптического приборостроения и предназначено для регистрации спектров комбинационного рассеяния (КР) света газовых сред. Многоканальный высокоэффективный КР-спектрометр содержит входную щель, находящуюся в фокусе входного вогнутого зеркала, оптически связанного с...
Тип: Изобретение
Номер охранного документа: 0002492434
Дата охранного документа: 10.09.2013
20.11.2013
№216.012.8326

Способ анализа многокомпонентных газовых сред

Изобретение относится к области аналитического приборостроения и может быть использовано для анализа состава многокомпонентных газовых сред. Облучают анализируемую газовую среду лазерным линейно-поляризованным монохроматическим излучением и последовательно регистрируют два спектра...
Тип: Изобретение
Номер охранного документа: 0002499250
Дата охранного документа: 20.11.2013
20.03.2015
№216.013.31f5

Способ газоанализа природного газа

Изобретение относится к области аналитического приборостроения и предназначено для качественного и количественного анализа природного газа (ПГ). Способ включает облучение газа линейно поляризованным монохроматическим лазерным излучением и одновременную регистрацию m спектров спонтанного...
Тип: Изобретение
Номер охранного документа: 0002544264
Дата охранного документа: 20.03.2015
10.07.2015
№216.013.5d9e

Анализатор состава выдыхаемого воздуха

Изобретение относится к области аналитического приборостроения, в частности к оборудованию, позволяющему диагностировать определенные виды заболеваний человека путем анализа состава выдыхаемого им воздуха. Анализатор состава выдыхаемого воздуха содержит непрерывный лазер с длиной волны 532 нм,...
Тип: Изобретение
Номер охранного документа: 0002555507
Дата охранного документа: 10.07.2015
10.05.2016
№216.015.3d55

Светосильный кр-газоанализатор

Изобретение относится к области измерительной техники, а именно к спектроскопии комбинационного рассеяния света, и может быть использовано для проведения качественного и количественного анализа газовых сред. Устройство содержит лазер, работающий в непрерывном режиме, фокусирующую линзу, газовую...
Тип: Изобретение
Номер охранного документа: 0002583859
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.b139

Лазерный газоанализатор

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода...
Тип: Изобретение
Номер охранного документа: 0002613200
Дата охранного документа: 15.03.2017
26.08.2017
№217.015.ed11

Фотоприемник для регистрации инфракрасного излучения в области 10,6 мкм

Изобретение относится к области измерительной техники и касается фотоприемника для регистрации инфракрасного излучения в области 10,6 мкм. Фотоприемник включает в себя герметичную наполненную газом камеру, оснащенную входным окном, прозрачным для измеряемого излучения, и блок электроники....
Тип: Изобретение
Номер охранного документа: 0002628675
Дата охранного документа: 21.08.2017
20.01.2018
№218.016.18c1

Способ измерения энергии излучения инфракрасного и терагерцового диапазонов

Изобретение относится к области измерительной техники и касается способа измерения энергии излучения инфракрасного и терагерцового диапазонов. Способ включает в себя введение излучения в герметичную камеру, заполненную газом, и измерение величины нагрева газа, обусловленного поглощением...
Тип: Изобретение
Номер охранного документа: 0002636138
Дата охранного документа: 20.11.2017
10.05.2018
№218.016.4642

Анализатор состава природного газа

Изобретение относится к области измерительной техники. Анализатор состава природного газа содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным и боковым окном, фотообъектив, голографический фильтр, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления,...
Тип: Изобретение
Номер охранного документа: 0002650363
Дата охранного документа: 11.04.2018
+ добавить свой РИД