×
10.11.2013
216.012.7f60

Результат интеллектуальной деятельности: ТЕРМОЭЛЕКТРИЧЕСКИЙ СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ПОВЕРХНОСТНОГО СЛОЯ МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, при этом сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС. Технический результат: устранение влияния температуры контролируемого изделия на величину разностной термоЭДС. 1 ил., 2 табл.
Основные результаты: Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла, заключающийся в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую - на эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, отличающийся тем, что сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном, оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС.

Предлагаемое изобретение относится к области неразрушающего контроля и может быть использовано для контроля физико-химических свойств поверхностных слоев металла контролируемого изделие, подвергнутого термической или химико-термической обработке, а также для выявления областей пластической деформации, предшествующей разрушению, необходимых для выявления остаточного ресурса.

Известен способ неразрушающего контроля качества поверхностного слоя металла (SU 670868 A1, МКП 5 G01N 25/32, опубл. 30.06.1979 г.), выбранный в качестве прототипа, заключающийся в измерении термоЭДС, возникающий при контакте нагреваемых электродов с контролируемым изделием, и сопоставлении с термоЭДС эталонного образца. Используют две группы одинаково нагретых электродов из одного материала, устанавливаемых на обработанную и необработанную поверхность детали, а о качестве поверхностного слоя судят по величине суммарной термоЭДС электродов.

В этом способе контроля в качестве холодного электрода выступает контролируемое изделие. Поэтому если его температура изменяется при разных условиях контроля, например, в первый раз изделие контролируют при положительной температуре внешней окружающей среды, а второй раз - при отрицательной температуре, то при одинаковом качестве поверхностного слоя величина термоЭДС будет различной.

Недостатком этого способа является влияние на величину разностной термоЭДС температуры контролируемого изделия, в результате этого нельзя однозначно судить о качестве поверхностного слоя.

Задачей изобретения является устранение влияния температуры контролируемого изделия на величину разностной термоЭДС.

Поставленная задача решена за счет того, что в термоэлектрическом способе неразрушающего контроля качества поверхностного слоя металла, так же как в прототипе, используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую на эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталонным образцом, а о качестве поверхностного слоя судят по ее величине.

Согласно изобретению сначала измеряют температуру контролируемого изделия,

используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталонным образцом, оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона.

Известно, что абсолютная термоЭДС металлов и сплавов зависит от разности температур между нагреваемым и холодным электродами [В.Г. Лившиц, В.С. Крапошин, Я.Л. Линецкий. Физические свойства металлов и сплавов. М.: Металлургия, 1980, стр.232, формула 235)]:

e=a+2bΔТ+3cΔТ2,

где a, b, c - коэффициенты уравнения;

ΔТ - разность температур между нагреваемым и холодным электродами.

Разностная термоЭДС, используемая в прототипе, определяется выражением:

e1-e2=(a1-a2)+2ΔT(b1-b2)+3ΔT2(c1-c2),

где а1, b1, c1 - коэффициенты уравнения, определяющего термоЭДС контролируемого изделия;

a2, b2, c2 - коэффициенты уравнения, определяющего термоЭДС эталонного образца,

ΔТ - разность температур между нагреваемым и холодным электродами.

Таким образом, разностная термоЭДС будет оставаться неизменной для одного контролируемого изделия, если параметры контроля неизменны, то есть разность температур между нагреваемым и холодным электродами постоянна.

На фиг.1 представлена схема устройства для осуществления предлагаемого способа.

В таблице 1 приведены значения разностной термоЭДС, измеренные предлагаемым способом, от деформации при различных температурах контролируемого изделия.

В таблице 2 приведены результаты измерения термоЭДС по способу прототипу.

Заявляемый способ осуществлен с помощью устройства для контроля качества поверхностного слоя металла (фиг.1), содержащего последовательно соединенные первую группу нагреваемых электродов 1, эталонный образец 2, контролируемое изделие 3, вторую группу нагреваемых электродов 4. Нагреватель 5 размещен с возможностью воздействия на первую 1 и вторую 4 группы нагреваемых электродов. Входы дифференциального усилителя 6 подключены к первой и второй группам нагреваемых электродов 1 и 4. Выход дифференциального усилителя 6 подключен к аналого-цифровому преобразователю 7 (АЦП). Выход аналого-цифрового преобразователя 7 (АЦП) подключен к первому входу микроконтроллера 8, к первому выходу которого подключен индикатор 9. Датчик температуры 10 подключен ко второму входу микроконтроллера с возможностью теплового контакта с контролируемым изделием 3. Второй выход микроконтроллера подключен r блоку управления нагревателем 11. Выход блока управления нагревателем 11 подключен к нагревателю 5.

Первая и вторая группы нагреваемых электродов 1 и 4, выполнены из одного материала, например, из меди. Нагреватель 5 может быть стандартным мощностью 25 ватт. Дифференциальный усилитель 6 должен быть с малым дрейфом напряжения смещения нуля, например, К140УД17. Аналого-цифровой преобразователь 7 (АЦП) может быть стандартным, например, К1113ПВ1, микроконтроллер 8 может быть стандартным, например, ATMEGA 16. Индикатор 9 может быть выполнен на светодиодах АЛС324А. Датчик температуры 10 может быть стандартным, например, термопара хромель-алюмель. Блок управления нагревателем 11 может быть выполнен на транзисторе, например, КТ 818Г. Эталонный образец 2 должен быть изготовлен из того же материала и той же плавки, что и контролируемое изделие 3.

Предлагаемым способом был проведен контроль качества поверхностного слоя металла девяти контролируемых изделий из трех марок сталей 12Х18Н10Т; 0.8ПС-5 и СТ3, по три образца из каждой марки.

Предварительно каждое контролируемое изделие 3 было подвергнуто разной степени пластической деформации на разрывной машине с компьютерным управлением. Для сравнения с результатами, полученными заявляемым способом, величину пластической деформации (абсолютное удлинение) измеряли штангенциркулем.

Контроль пластической деформации был проведен при трех значениях температуры каждого контролируемого изделия 3 и каждого эталонного образца 2, аналогично, как и по способу прототипу.

Вначале термоЭДС поверхностного слоя контролируемого изделия 3 измеряли при температуре +25°C. Процедуру контроля проводили следующим образом: вначале с помощью датчика температуры 10 измеряли температуру контролируемого изделия 3, и передавали данные в микроконтроллер 8, сигнал которого поступал в блок управления нагревателем 11, который устанавливал такую температуру нагревателя 5, чтобы разность температур между группами нагреваемых электродов 1, 4 и контролируемым изделием 3 и эталонным образцом 2, поддерживалась одинаковой. Нагреватель 5 воздействовал на группы нагреваемых электродов 1 и 4. Длительность воздействия контролировали микроконтроллером 8, и как только температура групп нагреваемых электродов 1 и 4 достигала требуемого значения (в примере разность температур была задана в 130°C), микроконтроллер 8 выдавал сигнал на индикатор 9, включая его для отображения величины измеренной термоЭДС. Между первой группой нагреваемых электродов 1 и эталонным образцом 2, изготовленным из той же марки стали и той же плавки, что и контролируемое изделие 3, возникала термоЭДС 1, которая поступала на первый вход дифференциального усилителя 6. Между второй группой нагреваемых электродов 4 и контролируемым изделием 3 также возникала вторая термоЭДС 2, которая поступала на второй вход дифференциального усилителя 6. Дифференциальный усилитель 6 вычитал термоЭДС 1 из термоЭДС 2. Разностная термоЭДС усиливалась дифференциальным усилителем 6 и поступала в аналого-цифровой преобразователь 7 (АЦП), который преобразовывал аналоговую величину в цифровой код, который поступал в микроконтроллер 8. Микроконтроллер 8 преобразовывал двоичный код аналого-цифрового преобразователя 7 (АЦП) в семисегментный код. Этот код поступал в индикатор 9, который отображал величину термоЭДС.

Затем контролируемое изделие 3 и эталонный образец 2 охлаждали до 0°C и процедуру измерения повторяли. На третьем этапе контролируемое изделие 3 и эталонный образец 2 охлаждали до -25°C и проводили измерения термоЭДС.

Результаты контроля приведены в таблице 1, из которой видно, что использование заявляемого способа позволяет однозначно определить одинаковую величину пластической деформации поверхностного слоя металла (0,6 мм, 1,9 мм, 3,5 мм) при изменении температуры контролируемого изделия.

Для сравнения в таблице 2 приведены результаты измерения термоЭДС по способу прототипу. Контролируемое изделие было изготовлено из стали СТ3 и предварительно было подвергнуто деформации в 3,3 мм. Деформацию (абсолютное удлинение) контролируемого образца измерили штангенциркулем. Эталонный образец был изготовлен из стали СТ3 той же плавки, что и контролируемое изделие. Из таблицы 2 видно, что при изменении температуры контролируемого изделия изменяется величина термоЭДС, в результате этого делается вывод о разной степени пластической деформации поверхностного слоя, что не соответствует действительности.

Таким образом, предлагаемый способ позволяет устранить влияние сезонных или других колебаний температуры контролируемого изделия и эталонного образца на величину разностной термоЭДС.

Таблица 1
Деформация, мм Дифференциальная термоЭДС, мВ
Сталь 12Х18Н10Т Сталь 0,8ПС-5 Сталь 3
Температура Температура Температура
-25°C 0°C +25°C -25°C 0°C +25°C -25°C 0°C +25°C
0 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5 0±0,5
0,6 2±0,5 2±0,5 2±0,5 2±0,5 2±0,5 2±0,5 3±0,5 3±0,5 3±0,5
1,9 3±0,5 3±0,5 3±0,5 5±0,5 5±0,5 5±0,5 5±0,5 5±0,5 5±0,5
3,5 6±0,5 6±0,5 6±0,5 7±0,5 7±0,5 7±0,5 9±0,5 9±0,5 9±0,5

Таблица 2
Температура, °С Дифференциальная термоЭДС, мВ
-25 21±0,5
0 15±0,5
+25 9±0,5

Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла, заключающийся в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую - на эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, отличающийся тем, что сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном, оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС.
ТЕРМОЭЛЕКТРИЧЕСКИЙ СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ПОВЕРХНОСТНОГО СЛОЯ МЕТАЛЛА
Источник поступления информации: Роспатент

Showing 11-11 of 11 items.
26.08.2017
№217.015.de0b

Устройство для неразрушающего контроля шероховатости поверхностного слоя металла

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Устройство для неразрушающего контроля шероховатости поверхностного слоя металла содержит нагреватель с возможностью теплового...
Тип: Изобретение
Номер охранного документа: 0002624787
Дата охранного документа: 06.07.2017
Showing 81-90 of 234 items.
10.02.2014
№216.012.9fa7

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в...
Тип: Изобретение
Номер охранного документа: 0002506579
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa8

Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в породах и рудах

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов. Способ согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002506580
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a117

Способ приготовления реагента для получения меченого технецием-99м норфлоксацина

Изобретение относится к способу приготовления реагента для получения меченого технецием-99м норфлоксацина. Указанный способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком норфлоксацина гидрохлорида, замораживание полученной смеси при...
Тип: Изобретение
Номер охранного документа: 0002506954
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a164

Способ синтеза ферритов

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут....
Тип: Изобретение
Номер охранного документа: 0002507031
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1dd

Способ получения фуллеренов

Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов. Проводят электрохимическую обработку сточных вод, содержащих органические примеси, в анодной камере двухкамерного электролизера под...
Тип: Изобретение
Номер охранного документа: 0002507152
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34b

Способ прогнозирования течения ишемической болезни сердца

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии. Способ прогнозирования течения ишемической болезни сердца заключается в том, что до и после лечения исследуют модифицированные ЛП(а) путем обработки 0,5 мл сыворотки крови 0,2 мл 0,1% раствора Тритона...
Тип: Изобретение
Номер охранного документа: 0002507518
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a747

Способ вольтамперометрического определения наночастиц feo на угольно-пастовом электроде

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц FeOна угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц FeO на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм раствор...
Тип: Изобретение
Номер охранного документа: 0002508538
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a758

Способ определения места обрыва одной фазы воздушной линии электропередачи

Изобретение относится к электротехнике, а именно к средствам обработки информации в электротехнике, и может бить использовано для определения места короткого замыкания на воздушной линии электропередачи. Способ основан на мониторинге электрической сети, отличающийся тем, что измеряют массивы...
Тип: Изобретение
Номер охранного документа: 0002508555
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a8f4

Опора для дорнования с дополнительным растяжением

Изобретение относится к металлообработке и направлено на сокращение времени на установку заготовки и упрощение конструкции опоры для дорнования с дополнительным растяжением глубоких отверстий малого диаметра, осуществляемого путем проталкивания дорнов. Опора содержит полый корпус, размещенную...
Тип: Изобретение
Номер охранного документа: 0002508967
Дата охранного документа: 10.03.2014
+ добавить свой РИД