×
10.11.2013
216.012.7ce0

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ПОКРЫТИЯ НА РЕЖУЩИХ КРОМКАХ ПОЧВООБРАБАТЫВАЮЩЕЙ ТЕХНИКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к сварочному производству. Способ включает изготовление присадочного материала в форме брикетов. Брикеты состоят из смеси порошков, в которой упрочняющие частицы в наноразмерном диапазоне составляют 0,1-0,4% от массы наплавляемого металла. Связующий компонент выполняют в виде 4-5% водного раствора карбоксиметилцеллюлозы (КМЦ). Затем осуществляют сушку до их полного затвердевания. Затем укладывают брикет на наплавляемую поверхность. Далее производят наплавку валика покрытия путем полного расплавления брикета присадочного материала и частично металла изделия с глубиной его проплавления 0,1-0,5 мм. Каждый последующий брикет укладывают на наплавляемую поверхность после расплавления предыдущего. Далее производят наплавку непрерывно валик за валиком двух и более слоев покрытия. Техническим результатом изобретения является повышение производительности за счет непрерывного процесса наплавки покрытия валик за валиком без последующего их охлаждения. 2 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к сварочному производству и может быть использовано для получения металлического покрытия на режущих кромках почвообрабатывающей техники.

Исследования последних лет показали, что материалы и покрытия с наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами. Поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой. Существуют различные методы формирования нано-структурных поверхностных слоев и наноструктурных покрытий, например, методом лазерно-плазменной обработки [В.В. Мелюков, А.В. Частиков, А.А. Чирков, A.M. Чирков, А.В. Окатов. Формирование наноструктурных поверхностных слоев методом лазерно-плазменной обработки при атмосферных условиях. Сб.: Сварка и контроль - 2005. Материалы докладов 24-й научно-технической конференции сварщиков Урала и Сибири 16-18 марта 2005 г. Челябинск, 2005, с.125-131], или методом абразивной обработки [Zhang Shu-lan, Chen Huai-ning, Lin Quanhong, Liu Gang (Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, КНР). Hanjie xuebao=Trans. China Weld. Inst. 2005.26, №3, c.73-76]. Однако эти методы позволяют получать наноструктурные поверхностные слои или металлические покрытия толщиной не более нескольких десятков микрометров, что часто является совершенно недостаточным.

На многие детали почвообрабатывающей техники, эксплуатирующиеся в условиях интенсивного износа и средних ударных нагрузках, наносят металлические покрытия толщиной 2-5 мм и более различными способами наплавки: плазменным, лазерным, индукционным, аргонодуговым, электродуговым, электрошлаковым и др., в качестве присадочных материалов при наплавке покрытий используют порошки, проволоку, электроды, пасты. Получаемые наплавкой покрытия обладают высокой твердостью и износостойкостью, но низкой сопротивляемостью ударным нагрузкам и высокой склонностью к трещинообразованию. Получение в наплавленном покрытии элементов упрочняющих частиц в наноразмерном диапазоне привело бы к измельчению структуры покрытия и обеспечило бы повышение его ударостойкости и трещиностойкости. Однако при всех методах наплавки до настоящего времени не удавалось получать покрытия с упрочняющими частицами в наноразмерном диапазоне.

Решением является получение наплавленных материалов, содержащих упрочняющие частицы в наноразмерном диапазоне.

Покрытия, полученные наплавкой и описанные в литературе, имеют существенно более крупную структуру. Так в работе [А.Е. Вайнерман, М.Х. Шоршоров, В.Д. Веселков, B.C. Новосадов. Плазменная наплавка металлов. Л.: Изд-во «Машиностроение», 1969 г., с.105-113, 153-163] показано, что при наплавке плазменной струей с токоведущей присадочной проволокой из медных сплавов и аустенитных нержавеющих сталей на малоуглеродистые и низколегированные стали образуются покрытия с крупнозернистой или дендритной структурой и величиной зерна, преимущественно составляющей от 15-17 до 50-70 мкм и более. И только отдельные выделения в структуре имеют размер 3-5 мкм. Такую же по размерам структуру имеют наплавленные покрытия, полученные при электронно-лучевой наплавке композиционных покрытий на основе карбидов титана и порошковых карбидосталей [В.Е. Панин, В.Г. Дураков, Г.А. Прибытков, С.И. Белюк, Ю.В. Свитич, Н.Н. Голобоков, С.З. Дехонова. Электронно-лучевая наплавка композиционных покрытий на основе карбида титана. - Физика и химия обработки материалов. 1997. №2. С.54-58; В.Е. Панин, В.Г. Дураков, Г.А. Прибытков, И.В. Полев, С.И. Белюк. Электронно-лучевая наплавка порошковых карбидосталей. - 1998. №6. С.53-59], при аргонодуговой наплавке [А.Е. Вайнерман, Н.В. Беляев. Аргонодуговая наплавка порошков на основе карбида вольфрама на сталь для получения износостойких покрытий. - Вопросы материаловедения. 2002. №2 (30). С.43-46], при других методах наплавки [Л.С. Лившиц. Металловедение для сварщиков. - Москва, «Машиностроение», 1979. С.236-246 и др.].

Ближайшим аналогом заявляемого изобретения является принятый за прототип «Способ получения методом наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне», патент РФ №2350441.

При этом способе получения методом наплавки металлического покрытия непосредственно перед сваркой изготавливается присадочный материал из смеси порошков и связующего карбоксиметилцеллюлозы в виде двух разных по составу компонентов паст с консистенцией густой сметаны, первая из которых состоит из нанопорошка тугоплавкого материала массой в пределах 0,5-4,0% от массы металла наплавки с диаметром частиц 10-70 нм, имеющего температуру плавления на 400°C и более выше температуры жидкого металла сварочной ванны, и связующего, а вторая состоит из порошка или смеси порошков, обеспечивающих служебные свойства наплавленного покрытия, и связующего, далее на поверхность изделия, подлежащего наплавке, наносят слой пасты первого состава толщиной 0,1-0,4 мм, затем на первый слой наносят слой пасты второго состава толщиной 2,0-5,0 мм, просушивают слои пасты до полного удалении влаги и после этого производят наплавку путем полного расплавления обоих слоев пасты, а также основного металла с глубиной его проплавления 0,03-0,4 мм.

Недостатком способа по прототипу является низкая производительность наплавки. Каждый раз непосредственно перед наплавкой первого и последующих валиков необходимо выкладывать пасту, состоящую из двух слоев, на поверхность наплавляемых деталей, просушивать пасту до ее полного высыхания в печи при температуре 300°C в течение 15 мин или электрической дугой неплавящимся электродом без присадки в течение 5-10 мин и затем уже аргонодуговым способом неплавящимся электродом производить наплавку. При наплавке второго и последующих валиков покрытия, необходимо каждый раз охлаждать детали до температуры не выше 70°C, так как на горячую поверхность детали жидкую пасту не нанести. Резко охлаждать деталь с наплавкой нельзя из-за возможности образования трещин в наплавленном металле. Чем больше количество валиков покрытия необходимо нанести на поверхность детали, тем больше увеличится время ее изготовления, за счет повторения технологических операций по нанесению слоев жидкой пасты, их просушиванию и охлаждению деталей после наплавки. Все это значительно увеличивает трудоемкость изготовления деталей и снижает производительность наплавки.

Техническим результатом заявляемого изобретения является разработка способа получения металлического покрытия на режущих кромках почвообрабатывающей техники, обеспечивающий высокую производительность за счет непрерывного процесса наплавки покрытия валик за валиком, без последующего их охлаждения.

Технический результат достигается за счет того, что в способе получения металлического покрытия на режущих кромках почвообрабатывающей техники, включающий изготовление присадочного материала, состоящего из смеси порошков, обеспечивающих служебные свойства наплавляемого покрытия и содержащей упрочняющие частицы в наноразмерном диапазоне (10-70 нм) с температурой плавления более, чем на 400°C выше температуры жидкого металла сварочной ванны, и связующего компонента, согласно изобретению предварительно изготавливают присадочный материал в форме брикетов, состоящих из смеси порошков, в которой упрочняющие частицы в наноразмерном диапазоне составляют 0,1-0,4% от массы наплавляемого металла и связующего компонента 4-5% водного раствора карбоксиметилцеллюлозы (КМЦ), с последующей их сушкой при температуре 300°С в течение 20 мин до их полного затвердевания, затем укладывают брикет на наплавляемую поверхность, после чего производят наплавку валика покрытия путем полного расплавления брикета присадочного материала и частично металла изделия с глубиной его проплавления 0,1-0,5 мм, при этом каждый последующий брикет укладывают на наплавляемую поверхность при ее температуре от 5°С до 650°С после расплавления предыдущего, а наплавку двух и более слоев покрытия, состоящего из нескольких валиков, производят непрерывно валик за валиком.

Брикеты присадочного материала изготавливают следующих размеров: высотой 2-5 мм, шириной 5-20 мм, длиной 20-200 мм, после чего выполняется их сушка в печи при температуре 300°С в течение 20 мин до ее полного затвердевания.

Наплавку валиков покрытия непрерывно производят следующим образом: на наплавляемую режущую кромку почвообрабатывающей техники укладывают брикет присадочного материала и его переплавляют аргонодуговым способом, затем сразу же без охлаждения детали укладывается следующий брикет присадочного материала, в зависимости от требуемой геометрической формы покрытия, либо рядом с первым валиком, либо на него и далее его переплавляют. Процесс наплавки повторяется до получения требуемых геометрических размеров покрытия по длине, ширине и высоте.

Содержание в присадочном материале в форме брикетов упрочняющих частиц в наноразмерном диапазоне массой 0,1-0,4% от массы наплавляемого материала обеспечивает получение металлического покрытия, в структуре которого имеются упрочняющие частицы карбидовольфрама в наноразмерном диапазоне 10-70 нм.

Пример конкретного выполнения:

Опробование предложенного способа получения металлического покрытия размером: высота 3,0-3,8 мм, ширина 25-30 мм, длина 400 мм на режущие кромки лезвия лемеха производили следующим образом.

Для опробования предложенного способа получения металлического покрытия был изготовлен присадочный материал в виде сухих затвердевших брикетов. Изготовление брикетов выполняли следующим образом: делали смесь порошков хрома, никеля, титана, бора, графита и нанопорошка карбида вольфрама WC с температурой плавления 2785°С. В полученную смесь порошков добавляли 4-5% водный раствор карбоксиметилцеллюлозы и тщательно перемешивали до получения однородной массы. Из полученной массы формировали брикеты следующих размеров: высотой 4 мм, шириной 13 мм, длиной 200 мм, после чего выполняли их сушку в печи при температуре 300°С в течение 20 мин до их полного затвердевания. После чего присадочный материал в виде брикетов был готов к наплавке. Полученный присадочный материал в виде двух брикетов один за другим (в длину) укладывали по линии кромки лезвия лемеха, при этом температура наплавляемой поверхности была не ниже 5°С во избежание образования трещин, и ручным аргонодуговым способом неплавящимся электродом на токе 200 А выполняли наплавку путем полного расплавления брикетов присадочного материала и частично металла изделия с глубиной его проплавления 0,1-0,5 мм. Для получения металлического покрытия на кромке лезвия лемеха шириной 25-30 мм, рядом с полученным валиком покрытия укладывали еще два брикета в длину и переплавляли, при этом температура наплавляемой поверхности не превышала 650°С во избежание трещинообразования наплавленного металла. После наплавки первого слоя металлического покрытия его высота составила 1,7 мм. Для получения высоты покрытия 3,0-3,8 мм была выполнена наплавка второго слоя покрытия по той же технологии. После наплавки двух слоев покрытия его высота составила 3,3 мм, ширина 26 мм, а длина 400 мм.

Для сравнения на режущие кромки лезвия лемеха производили наплавку металлического покрытия по прототипу.

Для получения первого слоя пасты был взят нанопорошок карбида вольфрама WC массой 4,5 г, который был помещен в карбоксиметилцеллюлозу и тщательно перемешан для получения однородной смеси консистенции сметаны.

Для получения второго слоя пасты была взята смесь порошков хрома, никеля, ванадия, титана, бора, графита общей массой 300 г. Полученная смесь порошков была помещена в карбоксиметилцеллюлозу и тщательно перемешана до получения однородной смеси консистенции густой сметаны.

На режущую кромку лезвия лемеха была нанесена паста первого состава с нанопорошком карбида вольфрама слоем толщиной 0,4 мм, шириной 13 мм и длиной 400 мм. На первый слой пасты был нанесен второй слой пасты со смесью порошков толщиной 4 мм, шириной 13 мм и длиной 400 мм, после чего деталь лемеха с нанесенной двухслойной пастой была просушена в печи при температуре 300°С в течение 15 минут до полного удаления влаги.

Затем электрической дугой, горящей между неплавящимся вольфрамовым электродом и вторым слоем пасты в аргоне на токе 200 А, были переплавлены оба слоя пасты и частично металл изделия с глубиной его проплавления 0,1-0,4 мм. Перед нанесением следующих слоев пасты деталь лемеха остывала до температуры не выше 70°С. Для получения металлического покрытия на кромке лезвия лемеха шириной 25-30 мм, рядом с полученным валиком покрытия повторно наносили первый и второй слои пасты, просушивали в печи при температуре 300°С в течение 15 минут до полного удаления влаги и переплавляли ручным аргонодуговым способом, после чего деталь лемеха остывала до температуры не выше 70°С. Для получения высоты покрытия 3,0-3,8 мм на поверхность наплавленного слоя (высотой 1,5-2,0 мм) аналогично была выполнена наплавка второго слоя покрытия по той же технологии. После наплавки двух слоев покрытия его высота составила 3,3 мм, ширина 26 мм, а длина 400 мм.

Из полученных наплавленных металлических покрытий были изготовлены шлифы для изучения структуры наплавки. Исследования структуры на электронном микроскопе «SEM 535» показали, что покрытия, полученные по предлагаемому способу и прототипу, содержат в структуре упрочняющие частицы размером 10-70 нм.

Время наплавки металлического покрытия на режущую кромку одного лезвия лемеха по предлагаемому способу и прототипу приведено в таблице.

Из таблицы видно, что время наплавки по предлагаемому способу без учета изготовления присадочных материалов составило 26 минут, что в 4,8 раза быстрее, чем время наплавки металлического покрытия по прототипу, а общее время на получение металлического покрытия по предлагаемому способу с учетом изготовления присадочных материалов составило 73 минуты, что в 2 раза быстрее, чем по прототипу.

Технико-экономический эффект от предложенного изобретения выразится в снижении себестоимости работ за счет увеличения производительности труда при наплавке.

Источник поступления информации: Роспатент

Showing 61-68 of 68 items.
20.05.2019
№219.017.5d59

Сварочная проволока для сварки жаропрочных жаростойких сплавов

Изобретение может быть использовано при создании ответственных конструкций из жаростойких жаропрочных сплавов на железохромоникелевой основе, в частности для изготовления реакционных змеевиков высокотемпературных установок пиролиза, подвергающимся значительным статическим нагрузкам, работающих...
Тип: Изобретение
Номер охранного документа: 0002373039
Дата охранного документа: 20.11.2009
30.05.2019
№219.017.6bda

Способ оксидирования титанового сплава для антифрикционной наплавки

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. Способ включает микродуговое оксидирование МДО в электролите под напряжением, при этом в качестве электролита используют раствор фосфатов или силикатов, а процесс МДО ведут в два...
Тип: Изобретение
Номер охранного документа: 0002367728
Дата охранного документа: 20.09.2009
09.06.2019
№219.017.79a8

Суспензия для получения покрытия

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. Технический результат изобретения заключается в разработке состава суспензии для получения покрытий для снятия статических электрических зарядов, работающего в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002399595
Дата охранного документа: 20.09.2010
09.06.2019
№219.017.79e4

Смесь для изготовления литейных форм и стержней

Изобретение относится к области литейного производства. Смесь содержит в мас.%: огнеупорный наполнитель в виде порошка недоплава производства электротехнического периклаза 40,0-50,0, связующее в виде жидкого стекла 5,0-12,0 и порошок лома использованных литейных форм из недоплава 45,0-48,0....
Тип: Изобретение
Номер охранного документа: 0002312732
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a36

Способ гранулирования флюса

Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов и может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том...
Тип: Изобретение
Номер охранного документа: 0002387521
Дата охранного документа: 27.04.2010
09.06.2019
№219.017.7ab0

Титановый сплав для трубопроводов и трубных систем теплообменного оборудования атомной энергетики

Изобретение относится к металлургии титановых сплавов, содержащих в качестве основы титан с заданным отношением легирующих и примесных элементов, и предназначено для использования в судовом и энергетическом машиностроении при производстве трубопроводов и сварных трубных систем, отвечающих...
Тип: Изобретение
Номер охранного документа: 0002351671
Дата охранного документа: 10.04.2009
09.06.2019
№219.017.7c90

Способ сварки плавлением меди и ее сплавов со сталями

Изобретение может быть использовано в машиностроении, судостроении и других отраслях промышленности при изготовлении различных узлов и конструкций, включающих соединения медных сплавов со сталями, кроме деталей или изделий из оловянных бронз. Предварительно на кромку стальной детали наплавляют...
Тип: Изобретение
Номер охранного документа: 0002325252
Дата охранного документа: 27.05.2008
10.07.2019
№219.017.ad15

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм. Для повышения прочностных свойств и сопротивляемости хрупким разрушениям при температуре до -20°С при...
Тип: Изобретение
Номер охранного документа: 0002383633
Дата охранного документа: 10.03.2010
Showing 71-80 of 87 items.
29.06.2019
№219.017.9f92

Способ дуговой наплавки меди и медных сплавов на сталь

Изобретение может быть использовано при изготовлении узлов, деталей и конструкций из стали с наплавленным рабочим слоем из меди или медного сплава, предназначенным для обеспечения их антифрикционных свойств, коррозионной стойкости, электропроводности и др. На подлежащую наплавке поверхность...
Тип: Изобретение
Номер охранного документа: 0002470750
Дата охранного документа: 27.12.2012
10.07.2019
№219.017.ab0f

Способ производства холоднокатаных полос, в том числе термообработанных, и устройство для его осуществления

Изобретение относится к прокатному производству и может быть использовано при производстве холоднокатаных полос марок 08Ю и IF-сталей, в том числе термообработанных. Задача изобретения - создание несложного и недорогого в изготовлении и эксплуатации оборудования. Согласно способу в процессе...
Тип: Изобретение
Номер охранного документа: 0002295404
Дата охранного документа: 20.03.2007
03.08.2019
№219.017.bcb0

Перестраиваемый генератор со связанными микрополосковыми линиями

Изобретение относится к области радиотехники. Технический результат - снижение уровня фазовых шумов перестраиваемых генераторов с резонансными системами на трехпроводных связанных микрополосковых линиях передач, отличающихся друг от друга на оптимальную величину. Для этого перестраиваемый...
Тип: Изобретение
Номер охранного документа: 0002696207
Дата охранного документа: 31.07.2019
21.11.2019
№219.017.e455

Перестраиваемый автогенератор гармоник

Изобретение относится к области радиотехники и может быть использовано в различной приемопередающей радиоаппаратуре, работающей вплоть до СВЧ диапазона. Технический результат заключается в повышении уровней мощности выделяемых k-й и n-й гармоник перестраиваемых генераторов по отношению к...
Тип: Изобретение
Номер охранного документа: 0002706481
Дата охранного документа: 19.11.2019
27.12.2019
№219.017.f33e

Способ соединения и крепления биоматов на слабоустойчивых склонах в условиях крайнего севера

Изобретение относится к области рекультивации нарушенных земель и может быть использовано в условиях Крайнего севера для защиты и восстановления нарушенных в результате техногенных воздействий склоновых участков. Способ соединения и крепления биоматов на слабоустойчивых склонах заключается в...
Тип: Изобретение
Номер охранного документа: 0002710165
Дата охранного документа: 24.12.2019
27.03.2020
№220.018.10cb

Способ рекультивации на склонах в условиях крайнего севера

Изобретение относится к области рекультивации нарушенных земель и может применяться для укрепления, защиты от эрозионных процессов и восстановления склоновых участков ландшафтов. Способ рекультивации на склонах в условиях Крайнего Севера заключается в том, что осуществляют укладку на...
Тип: Изобретение
Номер охранного документа: 0002717653
Дата охранного документа: 24.03.2020
11.04.2020
№220.018.141d

Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали

Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения...
Тип: Изобретение
Номер охранного документа: 0002718604
Дата охранного документа: 08.04.2020
23.04.2020
№220.018.1800

Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования

Изобретение относится к области металлургии, а именно к производству горячекатаной бесшовной насосно-компрессорной трубы повышенной эксплуатационной надежности, используемой для нефтепромыслового оборудования для добычи обводненной нефти и высокоминерализированных пластовых вод, содержащих...
Тип: Изобретение
Номер охранного документа: 0002719618
Дата охранного документа: 21.04.2020
21.05.2020
№220.018.1f34

Способ производства холоднокатаного отожженного листового проката из if-стали

Изобретение относится к области металлургии, а именно к способу производства холоднокатаного проката из сверхнизкоуглеродистых IF-сталей (Interstitial Free - сталь без атомов внедрения), который может быть использован в автомобильной промышленности. Для получения из стали проката с уровнем...
Тип: Изобретение
Номер охранного документа: 0002721263
Дата охранного документа: 18.05.2020
23.05.2020
№220.018.20a8

Способ производства холоднокатаного непрерывно отожженого листового проката из if-стали

Изобретение относится к области металлургии, а именно к производству холоднокатаного проката из IF-сталей, который используют в автомобильной промышленности. Для обеспечения уровня свойств, соответствующих сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при...
Тип: Изобретение
Номер охранного документа: 0002721681
Дата охранного документа: 22.05.2020
+ добавить свой РИД