×
10.11.2013
216.012.7caa

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕМБРАННОГО КАТАЛИЗАТОРА И СПОСОБ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ПОЛУЧЕННОГО КАТАЛИЗАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на другую сторону - слой, содержащий наночастицы сплавов Pt-Ru, Pt-Re, Pt-Rh или Pd-Ru, распределенные в пленке ИК-ПАН. Способ получения катализатора включает нанесение на подложку слоя ПАН из его раствора в органическом растворителе, сушку, облучение ИК светом. Нанесение на другую сторону подложки прекурсора - совместного раствора ПАН и соединений Pt или Pd с Ru или Re, или Rh в соотношении Pt(Pd):Ru(Re,Rh)=(7÷10):1 с введением в раствор мелкодисперсного углеродистого материала. Постадийное облучение ИК-светом при определенной интенсивности на каждой стадии, и охлаждение. Способ дегидрирования углеводородов осуществляют в установке с проточным мембранным реактором, где полученный катализатор разделяет установку на зону дегидрирования и зону, в которую избирательно диффундирует водород. Технический результат - повышение производительности и стабильности катализатора и эффективности дегидрирования. 2 н. и 7 з.п. ф-лы, 1 табл., 11 пр., 1 ил.

Изобретение относится к области создания катализаторов для химической и нефтехимической промышленности, которые могут быть использованы в процессах дегидрирования и риформинга органических соединений с целью получения водорода, олефинов, циклоолефинов и ароматических соединений.

Реакции дегидрирования и риформинга углеводородов являются важными составляющими промышленных процессов получения ценных мономеров, а также служат промышленным источником водорода, масштабы производства которого постоянно возрастают в связи с развитием водородной энергетики.

Для проведения большинства высокотемпературных каталитических реакций дегидрирования углеводородов используют высокодисперсные металлы VIII группы Периодической системы, в частности, платину, закрепленные на оксидных носителях. Серьезной проблемой таких систем является нежелательное дальнейшее дегидрирование и олигомеризация промежуточных поверхностных форм углеводородов, приводящие к образованию углистых отложений на катализаторах, не способных десорбироваться в процессе катализа и постепенно блокирующих поверхность металла, приводя к дезактивации катализатора.

Для решения этой проблемы в состав металла вводят добавки, снижающие способность катализатора образовывать множественные связи адсорбированных форм с активной фазой катализатора. В качестве таких добавок используют свинец, олово, рений и т.д. При этом повышение стабильности катализатора достигается ценой снижения его активности. Биметаллические системы, а особенно сплавы представляют интерес в катализе благодаря возможности плавного регулирования активности и селективности катализатора путем изменения концентрации легирующего элемента в твердом растворе. Так платинорениевые катализаторы, нанесенные на оксид алюминия методом пропитки, являются промышленными катализаторами риформинга нафты.

Недавно для стабилизации активности катализаторов дегидрирования предложено использовать в качестве носителя вместо окислов металлов углеродный материал [1]. Установлено, что углеродные материалы могут использоваться как сокатализаторы, усиливая каталитические свойства металла.

Для повышения эффективности каталитического действия в отношении реакций дегидрирования углеродные носители должны обеспечить высокую удельную поверхность металла и устойчивую дисперсность его частиц. К новым носителям, обладающим высокой пористостью и большой удельной поверхностью, можно отнести углеродные материалы, получаемые карбонизации полимеров. При внедрении в углеродную матрицу каталитически активных металлов на стадии карбонизации образуются композиции, в которых металл встраивается в графитоподобную структуру, значительно искажая ее кристаллическую решетку. Показано, что каталитическая активность таких металлосодержащих карбонизатов оказывается выше, чем у соответствующих металлических катализаторов, нанесенных на оксидные носители [2].

Известен способ получения катализатора дегидрирования углеводородов, содержащего наночастицы сплавов металлов платиновой группы, закрепленных на углеродном носителе, представляющем собой ИК-пиролизованный полиакрилонитрил (ИК-ПАН), путем пиролиза при облучении ИК-светом с интенсивностью, соответствующей Т=550-1100°C, прекурсора, представляющего собой совместный раствор в ДМФА полиакрилонитрила (ПАН) и соединений Pt и Ru, или Re, или Rh в соотношении Pt:Ru (Re, Rh)=(8-10):1 [3].

Недостатком предложенного способа является недостаточно высокая производительность полученного катализатора и высокая температура реакции дегидрирования циклогексана, метилциклогексана, этилбензола вплоть до Т=555°C.

Одним из решений этой проблемы является использование в качестве катализаторов дегидрирования предложенных в 60-е годы ХХ-го века мембран, избирательно проницаемых для водорода [4]. В одном из первых запатентованных процессов дегидрирования на мембранных катализаторах [5] фольги из сплавов палладия разделяли каталитический реактор на два несообщающихся пространства, так что водород, выделившийся при дегидрировании циклогексана в одном из них, диффундировал через мембрану в другое пространство, сдвигая тем самым равновесие реакции в сторону образования продуктов или снижая температуру достижения определенной конверсии. Еще большие конверсии достигаются, если диффундирующий из зоны дегидрирования водород в зоне его извлечения вступает в другую реакцию, т.е. при сопряжении реакций с образованием и поглощением водорода на мембранных катализаторах [6].

Недостатками массивных мембранных катализаторов из сплавов палладия являются их высокая стоимость, малая удельная поверхность и ограниченная водородопроницаемость при температурах дегидрирования. Для преодоления этих недостатков были предложены так называемые композитные мембранные катализаторы, в которых тонкий слой или диспергированные частицы металлов нанесены на относительно дешевые и высокопроницаемые носители, например пористые металлы или керамику. В последние годы большой интерес привлекают пористые углеродные носители композитных мембранных катализаторов [7, 8]. Например, половолоконные угольные мембраны, полученные карбонизацией сополимера ПАН и поливинилпирролидона, со средним радиусом пор около 50 нм, содержащие 2% диспергированных частиц металлического кобальта, были испытаны [7] как катализаторы метанирования монооксида углерода. При температурах 320-400°C удалось достичь селективности по метану более 85% при конверсии CO более 99%.

Наиболее близким по техническому решению и совокупности полезных признаков является способ получения мембранного катализатора обработки углеводородов, пригодного для дегидрирования, путем пиролиза при Т=450 или 500°C в течение двух часов прекурсора, представляющего собой раствор в ацетоне полифурфурилового спирта и ацетилацетоната Pt или Ru, нанесенный на пористую подложку из нержавеющей стали в виде диска или трубки, с последующим удалением растворителя и получением на пористой подложке слоя нанопористого углеродного материала, в котором диспергированы каталитические наночастицы металлов, предпочтительно Pt или Ru, а также Rh, Pd. Также в патенте описан способ обработки углеводородов, включающий контакт углеводородов с указанным катализатором. Отмечено, что дегидрирование проводят в модуле, плотно заполненном катализатором, который превращает его в разделительный блок [9].

Недостатком предложенного способа является использование в прекурсоре полифурфурилового спирта, который необходимо специально синтезировать, необходимость предварительного восстановления каталитической мембраны в токе смеси газов аргон/водород (10/1) при Т=200°C в течение 12 часов, невозможность варьирования металлоорганического соединения в прекурсоре.

Учитывая сказанное, получение высокопроизводительного и стабильного мембранного катализатора дегидрирования углеводородов простым и эффективным способом является актуальной задачей.

Задача предлагаемого изобретения заключается в повышении производительности и стабильности мембранного катализатора дегидрирования углеводородов при получении его простым способом, и способа дегидрирования углеводородов в его присутствии.

Решение поставленной задачи достигается тем, что предложен способ получения мембранного металл-углеродного катализатора дегидрирования углеводородов путем нанесения на пористую металлическую подложку прекурсора, представляющего собой совместный раствор углеродного носителя и соединений металлов, и пиролиза прекурсора с получением каталитического слоя, содержащего наночастицы металлов, в котором используют пористую металлическую подложку из нержавеющей стали, никеля или меди, на нее дополнительно наносят слой полиакрилонитрила из его раствора в диметилформамиде или диметилсульфоксиде, или диметилацетамиде, или N-метилпирролидоне, осуществляют сушку для удаления растворителя, облучение инфракрасным светом - ИК-светом с получением пиролизованного ИК-светом полиакрилонитрила ИК-ПАН, последующее нанесение на другую сторону указанной подложки прекурсора, представляющего собой совместный раствор в диметилформамиде или диметилсульфоксиде, или диметилацетамиде, или N-метилпирролидоне полиакрилонитрила и соединений Pt или Pd с Ru или Re или Rh в соотношении Pt(Pd):Ru(Re,Rh)=(7-10):1, введение в раствор мелкодисперсного углеродистого материала, пиролиз путем облучения на воздухе в течение 10÷15 мин. ИК-светом с интенсивностью, соответствующей Т=150°C и в течение 10÷15 мин. ИК-светом с интенсивностью, соответствующей Т=200°C, и в инертной атмосфере в течение 10÷120 с ИК-светом с интенсивностью, соответствующей Т=550÷1100°C, и охлаждение до комнатной температуры, а в качестве наночастиц металлов полученный каталитический слой содержит наночастицы биметаллических сплавов из ряда Pt-Ru, Pt-Re, Pt-Rh, Pd-Ru, тонкодисперсно и гомогенно распределенные в пленке углеродного носителя - пиролизованного ИК-светом полиакрилонитрила ИК-ПАН.

С целью увеличения производительности катализатора в качестве мелкодисперсного углеродистого материала используют мелкодисперсный активированный уголь или детонационный наноалмаз, или углеродные нанотрубки при соотношении ИК-ПАН : мелкодисперсный углеродистый материал = 1÷99:99÷1.

С целью увеличения селективности мембраны ИК-ПАН предпочтительно имеет графитоподобную структуру с d002=3,42÷3,76 Å.

Облучение слоя полиакрилонитрила предпочтительно осуществляют на воздухе в течение 10÷15 мин ИК-светом с интенсивностью, соответствующей Т=150°C, на воздухе в течение 10÷15 мин ИК-светом с интенсивностью, соответствующей Т=200°C, и в инертной атмосфере в течение 10-120 с ИК-светом с интенсивностью, соответствующей Т=600÷1150°C.

Охлаждение предпочтительно осуществляют со скоростью 30÷70°C/мин.

Для решения поставленной задачи предложен также способ дегидрирования углеводородов с использованием катализатора, полученного этим способом, в каталитической установке с проточным мембранным реактором, в котором находится катализатор, разделяющий его на зону дегидрирования и зону, в которую избирательно диффундирует водород.

В качестве углеводородов предпочтительно используют циклогексан или метилциклогексан, или этилбензол. Но могут быть использованы и другие углеводороды, например пропан.

Преимуществом предложенного способа получения катализатора является то, что активные каталитические центры создаются не только на поверхности композиционной мембраны, но и в ее порах, благодаря чему увеличивается удельная каталитическая поверхность и, следовательно, производительность полученного катализатора (Фиг.1).

Преимуществом предложенного способа также является то, что каталитически активные наночастицы биметаллического сплава и углеродный носитель получают одновременно. В процессе ИК-пиролиза нанесенного на композиционную мембрану слоя, содержащего ПАН и соединения Pt, Ru, Re, Rh, in situ образуются наночастицы сплавов Pt-Ru, Pt-Re, Pt-Rh, что способствует снижению зауглероженности и повышению производительности катализатора.

Преимуществом предложенного способа является также возможность регулирования диаметра пор мембраны для эффективного отвода водорода.

Преимуществом предложенного способа дегидрирования является то, что композиционная мембрана обеспечивает удаление из зоны реакции образующегося водорода, что увеличивает эффективность процесса дегидрирования.

Авторам предлагаемого изобретения впервые удалось получить мембранный катализатор, содержащий в каталитическом слое наночастицы биметаллических сплавов, равномерно распределенные в углеродном носителе.

Источником углерода при формировании углеродного носителя является ПАН, образующий в условиях ИК-пиролиза графитоподобную структуру. Кроме того, ПАН обеспечивает тонкодисперсное и равномерное распределение наночастиц каталитических металлов в структуре углеродного носителя за счет комплексообразования металла с нитрильными группами полимера.

В качестве мелкодисперсного углеродистого материала используют мелкодисперсный активированный уголь СКТ-6А с удельной поверхностью 640-1000 м2/г, или детонационный наноалмаз (ДНА) с удельной поверхностью 120-400 м2/г, или углеродные нанотрубки с удельной поверхностью 30 м2/г.

В качестве мелкодисперсного углеродистого материала, помимо активированного угля, углеродных нанотрубок и детонационных наноалмазов могут быть использованы, например, нанопористый углерод, окисленный пиролизованный полиакрилонитрил, графен, окисленный графен.

Дегидрирование углеводородов (циклогексана, метилциклогексана, этилбензола) проводят в каталитической установке с проточным мембранным реактором из нержавеющей стали, в котором между двумя фланцами зажимается мембранный катализатор в виде диска диаметром d=4 см и толщиной l=0,1 мм, разделяющий реактор на зону дегидрирования и зону, в которую избирательно диффундирует водород.

Пары углеводородов подают в зону дегидрирования реактора в потоке аргона из термостатированных барботеров при Т=8°C.

Продукты реакции анализируют с помощью хроматографа. Выходящий из реактора поток поступает в обогреваемую линию, омывающую кран-дозатор хроматографа с детектором по теплопроводности и колонкой с Порапаком Т, предназначенной для анализа углеводородов.

Производительность полученного мембранного катализатора по водороду определяли по формуле

К=3*(количество молей превращенного углеводорода)/(мольная концентрация каталитического металла)/(время в секундах).

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения.

Пример 1.

Подложку из пористой нержавеющей стали диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин, затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, RuCl3 в ДМФА, содержащего частицы мелкодисперсного активированного угля СКТ-6А. Для приготовления раствора взяли 10 мл ДМФА, 0,3 г угля СКТ-6А, 0,03 г ПАН (ПАН:СКТ-6А=1:10), 0,0243 г PtCl4, 0,0039 г RuCl3 (Pt:Ru=7,6:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин, затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 700°C, в течение 120 с. Масса приготовленного каталитического слоя 0,0214 г.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Пример 2.

Подложку из пористой нержавеющей стали диаметром 40 мм отмывали в хлороформе, затем в диметилацетамиде (ДМАА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМАА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин, затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 600°C, в течение 120 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, RuCl3 в ДМАА, содержащего частицы мелкодисперсного угля СКТ-6А. Для приготовления раствора взяли 10 мл ДМАА, 0,3 г угля СКТ-6А, 0,03 г ПАН (ПАН:СКТ-6А=1:10), 0,0243 г PtCl4, 0,0039 г RuCb (Pt:Ru=7,6:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин, затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 700°C, в течение 120 с. Масса приготовленного каталитического слоя 0,0214 г.

Пример 3.

Подложку из пористой нержавеющей стали диаметром 40 мм отмывали в хлороформе, затем в диметилсульфоксиде (ДМСО) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМСО. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 1150°C, в течение 20 с.Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, RuCl3 в ДМСО, содержащего частицы мелкодисперсного угля СКТ-6А. Для приготовления раствора взяли 10 мл ДМСО, 0,3 г угля СКТ-6А, 0,03 г ПАН (ПАН:СКТ-6А=1:10), 0,0243 г PtCl4, 0,0039 г RuCl3 (Pt:Ru=7,6:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C, ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин, затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 700°C, в течение 120 с. Масса приготовленного каталитического слоя 0,0214 г.

Пример 4.

Подложку из пористой нержавеющей стали диаметром 40 мм отмывали в хлороформе, затем в N-метилпирролидоне и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в N-метилпирролидоне. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 600°C, в течение 120 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, RuCl3 в N-метилпирролидоне, содержащего частицы мелкодисперсного угля СКТ-6А. Для приготовления раствора взяли 10 мл N-метилпирролидона, 0,3 г угля СКТ-6А, 0,003 г ПАН (ПАН:СКТ-6А=1:99), 0,0236 г PtCl4, 0,0029 г RuCl3 (Pt:Ru=10:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C, ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 550°C, в течение 60 с. Масса приготовленного каталитического слоя 0,0214 г.

Пример 5.

Подложку из пористого никеля диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, RuCl3 в ДМФА, содержащего частицы мелкодисперсного угля СКТ-6А. Для приготовления раствора взяли 10 мл ДМФА, 0,3 г угля СКТ-6А, 0,03 г ПАН (ПАН:СКТ-6А=1:10), 0,0243 г PtCl4, 0,0039 г RuCl3 (Pt:Ru=7,6:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C, ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 1100°C, в течение 10 с. Масса приготовленного каталитического слоя 0,0214 г.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Пример 6.

Подложку из пористой меди диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с.Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, RhCl3 в ДМФА, содержащего частицы мелкодисперсного угля СКТ-6А. Для приготовления раствора взяли 10 мл ДМФА, 0,3 г угля СКТ-6А, 0,03 г ПАН (ПАН:СКТ-6А=1:10), 0,0241 г PtCl4, 0,0041 г RhCl3 (Pt:Rh=7:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C, ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 1100°C, в течение 10 с. Масса приготовленного каталитического слоя 0,0214 г.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Пример 7.

Подложку из пористой нержавеющей стали диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C.

Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ПК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, RuCl3 в ДМФА, содержащего частицы детонационных наноалмазов (ДНА). Для приготовления раствора взяли 10 мл ДМФА, 0,5 г ДНА, 0,01 г ПАН (ПАН:ДНА=1:50), 0,0433 г PtCl4, 0,0068 г RuCl3 (Pt:Ru=7,6:1). Суммарное содержание металлов 5% масс. После добавления в раствор ДНА полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C, ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 700°C, в течение 120 с. Масса приготовленного каталитического слоя 0,0214 г.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Пример 8.

Подложку из пористой нержавеющей стали диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PtCl4, NH4ReO4 в ДМФА, содержащего частицы углеродных нанотрубок (УНТ). Для приготовления раствора взяли 10 мл ДМФА, 0,005 г УНТ, 0,495 г ПАН (ПАН:УНТ=99:1), 0,0267 г PtCl4, 0,0023 г NH4ReO4 (Pt:Re=10:1). Суммарное содержание металлов 5% масс. После добавления в раствор УНТ полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C, ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C в течение 15 мин затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 700°C, в течение 120 с. Масса приготовленного каталитического слоя 0,0214 г.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Пример 9.

Подложку из пористого никеля диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ПК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с.Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PdCl2, RuCl3 в ДМФА, содержащего частицы мелкодисперсного угля СКТ-6А. Для приготовления раствора взяли 10 мл ДМФА, 0,3 г угля СКТ-6А, 0,03 г ПАН (ПАН:СКТ-6А=1:10), 0,0238 г PdCl2, 0,0037 г RuCl3 (Pd:Ru=8:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C, ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C, в течение 15 мин, затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 1100°C, в течение 10 с. Масса приготовленного каталитического слоя 0,0214 г.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Пример 10.

Подложку из пористого никеля диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PdCl2, RhCl3 в ДМФА, содержащего частицы мелкодисперсного угля СКТ-6А. Для приготовления раствора взяли 10 мл ДМФА, 0,3 г угля СКТ-6А, 0,03 г ПАН (ПАН:СКТ-6А=1:10), 0,0235 г PdCl2, 0,0041 г RhCl3 (Pd:Rh=7:1). Суммарное содержание металлов 5% масс. После добавления в раствор угля СКТ-6А полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C, в течение 15 мин, затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 1100°C, в течение 10 с. Масса приготовленного каталитического слоя 0,0214 г.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Пример 11.

Подложку из пористой нержавеющей стали диаметром 40 мм отмывали в хлороформе, затем в диметилформамиде (ДМФА) и затем в спирте. Сушили в сушильном шкафу при 80°C.

На нее с одной стороны наносили центрифугированием слой ПАН из 3% раствора ПАН в ДМФА. Сушили в сушильном шкафу при 80°C. Подвергали предварительному ИК-облучению на воздухе с интенсивностью, соответствующей 150°C, в течение 15 мин, затем с интенсивностью, соответствующей 200°C, в течение 15 мин. После этого подложку с нанесенным слоем ПАН подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 800°C, в течение 10 с. Масса нанесенного слоя ИК-пиролизованного ПАН - 0,0149 г.

На подложку с нанесенным слоем ИК-пиролизованного ПАН с другой стороны центрифугированием/поливом наносили каталитический слой из совместного раствора ПАН и солей PdCl2, NH4ReO4 в ДМФА, содержащего частицы углеродных нанотрубок (УНТ). Для приготовления раствора взяли 10 мл ДМФА, 0,005 г УНТ, 0,495 г ПАН (ПАН:УНТ=99:1), 0,026 г PdCl2, 0,0023 г NH4ReO4 (Pd:Re=10:1). Суммарное содержание металлов 5% масс. После добавления в раствор УНТ полученный прекурсор подвергали ультразвуковому диспергированию (22 кГц) в течение 60 с. Эту процедуру повторяли 3 раза.

После нанесения прекурсора каталитического слоя и сушки полученной мембраны в сушильном шкафу при 80°C ее подвергали предварительному ИК-облучению с интенсивностью, соответствующей 150°C, в течение 15 мин, затем с интенсивностью, соответствующей 200°C, течение 15 мин. После этого полученную мембрану подвергали ИК-облучению в инертной атмосфере с интенсивностью, соответствующей 700°C, в течение 120 с. Масса приготовленного каталитического слоя 0,0214 г.

В предложенных примерах d002 ИК-ПАН составляет 3,42÷3,76 Å.

Полученную каталитическую мембрану испытывали в реакции дегидрирования углеводородов. Результаты испытаний представлены в таблице.

Таблица.
Результаты испытаний металл-углеродных нанокомпозитных каталитических мембран в реакции дегидрирования углеводородов.
Пример № Углеводород Селективность, % Конверсия, %
1 Циклогексан 99 52
2 Метилциклогексан 91 49
3 Циклогексан 93 19
4 Пропан 100 16
5 Этилбензол 74 51
6 Циклогексан 97 48
7 Циклогексан 91 65
8 Циклогексан 99 11
9 Циклогексан 92 43
10 Циклогексан 89 42
11 Циклогексан 100 12

ИСТОЧНИКИ ИНФОРМАЦИИ

1. L.R. Radovic, F. Rodrigues-Reinoso, in: P.A. Thrower (Ed.). Chemistry and Physics of Carbon, Vol.25, Marcel Dekker, New York, 1997, p.243.

2. М.М. Ермилова, Н.В. Орехова, В.М. Грязнов, Р.А. Пензин, М.А. Коваленко. Авт. свид. СССР №1555938, 1989.

3. М.М. Ермилова, М.Н. Ефимов, Л.М. Земцов, Г.П. Карпачева, Н.В. Орехова, Г.Ф. Терещенко. Решение о выдаче патента на изобретение от 05.02.2010 по заявке №2008142255/04(054877) от 27.10.2008.

4. Грязнов В.М. Катализ избирательно проницаемыми мембранами. Докл. АН СССР. 1969, 189,794.

5. W.M. Gryasnow, W.P. Polyakowa, E.M. Sawitsky, E.W. Chrapowa. Katalysator fur der Dehyrierung oder Dehydrozyklisierung der Kohlenwasserstoffe. Pat. BRD 1955263, 1971.

6. В.М. Грязнов, Способ одновременного проведения каталитических реакций с выделением и поглощением водорода. Авт. Свид. СССР 274092, 1964.

7. V.M. Linkov, R.D. Sanderson, A.L. Lapidus, A.J. Krylova. Carbon membrane-based catalysts for hydrogenation of CO. Catalysis Letters, 1994, 27, 97.

8. E.E. Iojoiu, J. Walmsley, H. Reader, R. Bredesen, S. Miachon, J.-A. Dalmon. Comparison of different support types for the preparation of nanostructured catalytic membranes. Rev. Adv. Mater. Sci. 2003, 5, 160.

9. H.C. Foley, M. Strano, M. Acharua, B.A. Raich. Nanoporous carbon catalytic membrane and method for making the same. US Patent 6,471,745, B1. 29.10.2002.


СПОСОБ ПОЛУЧЕНИЯ МЕМБРАННОГО КАТАЛИЗАТОРА И СПОСОБ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ПОЛУЧЕННОГО КАТАЛИЗАТОРА
Источник поступления информации: Роспатент

Showing 31-40 of 142 items.
20.07.2015
№216.013.6332

Способ получения синтез-газа

Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, который используется как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Способ получения синтез-газа включает окислительную конверсию...
Тип: Изобретение
Номер охранного документа: 0002556941
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6369

Способ получения тромборезистентного полимерного материала

Изобретение относится к химии полимеров и медицине, а именно к получению тромборезистентных полимерных материалов, которые находят применение в медицинской промышленности для изготовления контактирующих с кровью изделий, например протезов кровеносных сосудов, деталей имплантируемых в живой...
Тип: Изобретение
Номер охранного документа: 0002556996
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.636a

Способ гидроконверсии тяжелых фракций нефти

Настоящее изобретение относится к области нефтепереработки тяжелых нефтяных фракций. Изобретение касается способа гидроконверсии тяжелых фракций нефти - исходного сырья, состоит из нулевой стадии и последующих N стадий. Нулевая стадия включает подачу в реактор сырья, прекурсора катализатора -...
Тип: Изобретение
Номер охранного документа: 0002556997
Дата охранного документа: 20.07.2015
10.11.2015
№216.013.8bd3

Способ определения изотерм сорбции газов и паров в мембранных материалах и устройство для его осуществления

Изобретение относится к области определения сорбционных характеристик веществ, а именно к способам измерения величины сорбции и построения изотерм сорбции газа (пара) в различных мембранных материалах. Для определения изотерм сорбции газов и паров в мембранных материалах предварительно...
Тип: Изобретение
Номер охранного документа: 0002567402
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8cb0

Способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ

Изобретение относится к области получения биоспецифического гидрогелевого сорбента для выделения протеиназ. Сорбент получают путем радикальной полимеризации под действием окислительно-восстановительного катализатора при комнатной температуре. Полимеризации подвергают водный раствор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002567623
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9d0e

Катализатор получения алкадиенов (варианты) и способ получения алкадиенов с его применением (варианты)

Изобретение относится к синтезу основных мономеров синтетического каучука, в частности бутадиена-1,3 и изопрена каталитическим превращением низших спиртов. Описан катализатор получения алкадиенов из низших спиртов состава, мас.%: NaO - 0,1÷0,3, MgO - 30÷40, SiO - остальное и другой...
Тип: Изобретение
Номер охранного документа: 0002571831
Дата охранного документа: 20.12.2015
27.03.2016
№216.014.c96f

Дренаж для лечения глаукомы

Изобретение относится к области химии полимеров и медицины, а именно к дренажу для лечения глаукомы. Дренаж для лечения глаукомы размером 7.0-9.0×2.0-3.0×0.08-0.1 мм выполнен из сшитого полимера с концентрацией воды 70-80% масс., содержащего 30-50 мг антибиотика и 3.0-5.5 мг кортикостероида на...
Тип: Изобретение
Номер охранного документа: 0002578424
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.cf9e

Способ регенерации молибденсодержащего катализатора гидроконверсии

Изобретение относится к способу регенерации молибденсодержащего катализатора из остатков гидроконверсии тяжелого нефтяного сырья. Способ включает термообработку непревращенного остатка гидроконверсии, выкипающего при температуре выше 520°С и содержащего распределенный ультрадисперсный...
Тип: Изобретение
Номер охранного документа: 0002575175
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.32c5

Способ получения композитного лака для электропроводящего материала

Способ может быть использован для получения композиционных материалов, лаков и покрытий, обладающих высокими электрофизическими и прочностными характеристиками, которые могут быть использованы для создания электропроводящих и антистатических материалов, защитных экранов от электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002581084
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4af2

Катализатор и способ конверсии этанола, метанола или их смеси

Изобретение относится к области получения ароматических углеводородов из спиртов, а именно к катализатору конверсии этанола, метанола или их смеси в ароматические углеводороды. Катализатор содержит цеолит HZSM-5, ZnO и дополнительно содержит FeO и MgO при следующем составе в расчете на оксиды,...
Тип: Изобретение
Номер охранного документа: 0002594564
Дата охранного документа: 20.08.2016
Showing 31-40 of 76 items.
20.07.2015
№216.013.6332

Способ получения синтез-газа

Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, который используется как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Способ получения синтез-газа включает окислительную конверсию...
Тип: Изобретение
Номер охранного документа: 0002556941
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6369

Способ получения тромборезистентного полимерного материала

Изобретение относится к химии полимеров и медицине, а именно к получению тромборезистентных полимерных материалов, которые находят применение в медицинской промышленности для изготовления контактирующих с кровью изделий, например протезов кровеносных сосудов, деталей имплантируемых в живой...
Тип: Изобретение
Номер охранного документа: 0002556996
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.636a

Способ гидроконверсии тяжелых фракций нефти

Настоящее изобретение относится к области нефтепереработки тяжелых нефтяных фракций. Изобретение касается способа гидроконверсии тяжелых фракций нефти - исходного сырья, состоит из нулевой стадии и последующих N стадий. Нулевая стадия включает подачу в реактор сырья, прекурсора катализатора -...
Тип: Изобретение
Номер охранного документа: 0002556997
Дата охранного документа: 20.07.2015
10.11.2015
№216.013.8bd3

Способ определения изотерм сорбции газов и паров в мембранных материалах и устройство для его осуществления

Изобретение относится к области определения сорбционных характеристик веществ, а именно к способам измерения величины сорбции и построения изотерм сорбции газа (пара) в различных мембранных материалах. Для определения изотерм сорбции газов и паров в мембранных материалах предварительно...
Тип: Изобретение
Номер охранного документа: 0002567402
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8cb0

Способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ

Изобретение относится к области получения биоспецифического гидрогелевого сорбента для выделения протеиназ. Сорбент получают путем радикальной полимеризации под действием окислительно-восстановительного катализатора при комнатной температуре. Полимеризации подвергают водный раствор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002567623
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9d0e

Катализатор получения алкадиенов (варианты) и способ получения алкадиенов с его применением (варианты)

Изобретение относится к синтезу основных мономеров синтетического каучука, в частности бутадиена-1,3 и изопрена каталитическим превращением низших спиртов. Описан катализатор получения алкадиенов из низших спиртов состава, мас.%: NaO - 0,1÷0,3, MgO - 30÷40, SiO - остальное и другой...
Тип: Изобретение
Номер охранного документа: 0002571831
Дата охранного документа: 20.12.2015
27.03.2016
№216.014.c96f

Дренаж для лечения глаукомы

Изобретение относится к области химии полимеров и медицины, а именно к дренажу для лечения глаукомы. Дренаж для лечения глаукомы размером 7.0-9.0×2.0-3.0×0.08-0.1 мм выполнен из сшитого полимера с концентрацией воды 70-80% масс., содержащего 30-50 мг антибиотика и 3.0-5.5 мг кортикостероида на...
Тип: Изобретение
Номер охранного документа: 0002578424
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.cf9e

Способ регенерации молибденсодержащего катализатора гидроконверсии

Изобретение относится к способу регенерации молибденсодержащего катализатора из остатков гидроконверсии тяжелого нефтяного сырья. Способ включает термообработку непревращенного остатка гидроконверсии, выкипающего при температуре выше 520°С и содержащего распределенный ультрадисперсный...
Тип: Изобретение
Номер охранного документа: 0002575175
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.32c5

Способ получения композитного лака для электропроводящего материала

Способ может быть использован для получения композиционных материалов, лаков и покрытий, обладающих высокими электрофизическими и прочностными характеристиками, которые могут быть использованы для создания электропроводящих и антистатических материалов, защитных экранов от электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002581084
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4af2

Катализатор и способ конверсии этанола, метанола или их смеси

Изобретение относится к области получения ароматических углеводородов из спиртов, а именно к катализатору конверсии этанола, метанола или их смеси в ароматические углеводороды. Катализатор содержит цеолит HZSM-5, ZnO и дополнительно содержит FeO и MgO при следующем составе в расчете на оксиды,...
Тип: Изобретение
Номер охранного документа: 0002594564
Дата охранного документа: 20.08.2016
+ добавить свой РИД