×
27.10.2013
216.012.7956

УСТРОЙСТВО ДЛЯ ФИНИШНОЙ ОЧИСТКИ МОРСКИХ ПРИБРЕЖНЫХ ВОД

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области инженерной экологии. Устройство для финишной очистки морских прибрежных вод, представляющее собой санитарную водорослевую плантацию, включающую силовые пропиленовые канаты диаметром 30-40 мм, удерживаемые в горизонтальном положении металлическими тросами, прикрепленными к гравитационным якорям через крепежные элементы плавучих буев, соединенных с силовыми канатами. Устройство снабжено удерживаемыми на поверхности рабочими модулями для размещения фукусовых водорослей размером 2×1,5 м, сформированными из синтетических канатов диаметром 10-20 мм, являющихся субстратами для фукусовых водорослей. Модули прикреплены к пропиленовым силовым канатам или металлическим тросам посредством поплавков-кухтелей, для обеспечения крепления в требуемом положении модулей по отношению к направлению перемещения загрязненных вод в зависимости от погодных условий. Устройство включает приклепленные к силовым канатам вертикальные канаты-подводцы, являющиеся субстратом для ламинарий, длиной 5-12 м, и снабженные грузами, обеспечивающими их натяжение. Это повышает эффективность процесса финишной и профилактической очистки морских прибрежных вод от нефтепродуктов, токсичных металлов и бытовых отходов. 2 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области охраны окружающей среды и предназначено для очистки поверхностных вод в прибрежных районах моря, бухтах и других зонах возможного промышленного загрязнения нефтепродуктами, (НП), токсичными металлами включая радионуклиды (ТМ) и бытовыми стоками, включая стоки с сельскохозяйственных угодий и ферм, путем биологической обработки проточных вод с использованием бурых водорослей в сочетании с углеводородокисляющими (УВО) микроорганизмами.

Необходимость разработки подобных плантаций связана с тем, что прибрежные воды России не только все чаще становятся местами добычи, перегрузки, переработки, а также транспортировки газоконденсата и НП, но и зонами загрязнения промышленными, бытовыми и сельскохозяйственными стоками, делающими эти водоемы не способными к природному самоочищению, усиливая загрязнение прибрежных акваторий, являющихся не только зонами размножения многих морских организмов, но и зонами отдыха населения близлежащих населенных пунктов.

Для нашей страны особый интерес представляют моря арктического шельфа (например, Баренцево и Белое), а также моря других зон, отличающиеся высоким плодородием. В отношении морей арктического шельфа очень важным является и то, что самоочищение их от углеводородов происходит в 10-15 раз медленнее, чем морей средних широт [1, 2].

Известна описанная в качестве примера реализации способа очистки морских прибрежных вод от пленочных и диспергированных в поверхностном слое вод нефтепродуктов плавучая водорослевая плантация в виде классической плантации, обычно используемой для выращивания в толще воды на вертикально расположенных синтетических поводцах ламинариевых, дополненная горизонтальными синтетическими канатами, используемыми в качестве субстрата для выращивания фукусовых, которые в отличие от ламинариевых не подвержены гибели после попадания в зону достаточно плотного покрытия талломов НП (патент RU 2375315 С2, ближайший аналог). Недостатком указанного патента является то, что используемая для его реализации водорослевая плантация обеспечивает очистку воды только от НП, а для многих морских прибрежных районов актуален вопрос очистки от промышленных ТМ, сельскохозяйственных и бытовых загрязнений.

К недостаткам подобной плантации можно также отнести ее однонаправленность, не позволяющую переориентировать ее в случае изменения направления ветрового или приливно-отливного течения, а также недостаточную длину поводцов, не обеспечивающую охват водной толщи, что необходимо для попутной очистки вод от биологических отходов за счет воздействия кислорода, выделяемого ламинариевыми, и деятельности микроорганизмов-деструкторов, базирующихся вдоль их талломов. Еще один весьма существенный недостаток - сравнительно низкая плотность рабочей среды высаженных вдоль субстратов обоих видов водорослей и, соответственно, неоправданно низкая эффективность плантации.

Задача, решаемая при создании данного устройства, заключалась в разработке конструкции устройства для финишной очистки морских прибрежных вод, представляющего собой санитарную водорослевую плантацию (СВП), заселенную бурыми водорослями-макрофитами, способными поглощать углеводороды НП, ТМ и биологически активные элементы бытовых и сельскохозяйственных стоков, а также сообществом микроорганизмов, естественным для данного водоема и способного разлагать углеводородные компоненты НП и бытовых стоков до безопасных для среды и бентоса веществ.

Техническим результатом данного изобретения является повышение эффективности процесса финишной и профилактической очистки морских прибрежных вод от нефтепродуктов, а также токсичных металлов и бытовых стоков по сравнению с известными аналогами.

Заявляемая плантация включает силовые пропиленовые канаты диаметром 30-40 мм, удерживаемые в горизонтальном положении металлическими тросами, прикрепленными к гравитационным якорям через крепежные элементы плавучих буев, соединенные с силовыми канатами, при этом устройство снабжено удерживаемыми на поверхности рабочими модулями для размещения фукусовых водорослей размером 2×1,5 м, сформированными из синтетических канатов диаметром 10-20 мм, являющихся субстратами для фукусовых водорослей, прикрепленных к пропиленовым силовым канатам или металлическим тросам посредством поплавков-кухтылей, для обеспечения крепления в требуемом положении модулей по отношению к направлению перемещения загрязненных вод в зависимости от погодных условий. Устройство включает прикрепленные к силовым канатам вертикальные канаты-поводцы, являющиеся субстратом для ламинарий, длиной 5-12 м, и снабженные грузами, обеспечивающими их натяжение.

Подводная часть ламинарий, размещенных на поводцах, имеет либо собственные грузы для обеспечения вертикального положения поводцов, или грузы, которыми снабжены поводцы, выполнены в виде трубчатой или уголковой металлической рамы.

Устройство также снабжено дополнительными гравитационными якорями с поплавками, устанавливаемыми мористее гравитационных якорей, обеспечивающими возможность изменения положения плантации для улучшения усвоения загрязнений и для крепления сигнальных буев для защиты устройства от столкновения с проходящими в ночное время судами.

Основная масса водорослей высаживается различными способами на поводцах, закрепляемых на основных силовых канатах, при этом вертикальное положение поводцов обеспечивают прикрепленные к ним грузила.

Существуют варианты, в которых вместо гравитационных якорей используются периферийные рамы, также удерживаемые якорями, к которым крепится сразу целая сеть силовых канатов. Канаты образуют достаточно гибкую систему, способную противостоять волновому воздействию. Подобные системы обычно размещаются в сравнительно спокойных бухтах и ориентируются вдоль направления наиболее вероятного проникновения в район установки СВП приливно-отливных течений и ветровых волн, образовавшихся в открытом море.

Сами модули (фукусовый и ламинариевый) выполняются по-разному. Требующий ежегодной замены фукусовый модуль должен быть закреплен отдельно от ламинариевого с тем, чтобы его всегда можно было бы заменить, например, в случае слишком плотного покрытия водорослей НП, препятствующего частичному поглощению и частичному окислению НП за счет кислорода, вырабатываемого нижним модулем. Аварийный верхний модуль может быть переправлен в мастерскую, где его приведут в порядок и либо отмоют безопасным моющим составом, либо заменят отработавшие срок водоросли, после чего его можно будет восстановить для последующей замены очередного вышедшего из строя модуля этого типа.

Для обеспечения подвижности верхнего модуля его можно выполнить на основе каната диаметром 20-30 мм с проушинами для закрепления непосредственно на силовых канатах. Принципиально возможно и выполнение их на базе жесткой рамы в виде, например, поплавка из пластиковых труб с крепежными элементами для установки в определенных местах силовых канатов. Однако этот вариант достаточно громоздок и более трудоемок как при замене, так и для транспортировки. Кроме того, он существенно удорожает конструкцию, ведь ламинариевый модуль также должен иметь подповерхностную раму из каната для крепления достаточного количества поводцов, расположенных друг от друга на расстоянии не менее 30 см. В случае гибели водорослей на одном из поводцов он может быть удален и заменен на подготовленный заранее. Отказ от жестких трубчатых поплавков требует удвоения числа силовых канатов для того, чтобы закрепление обоих модулей не мешало одно другому. Кроме того, в случае выбора последнего менее затратного варианта, чем другие, более дорогостоящие, одновременно упрощается обслуживание СВП. При использовании достаточно плотного укрытия из ламинарии, создаются наиболее выгодные условия для функционирования микроорганизмов в симбиозе с растениями, что подтверждается в работе [5].

На рис.1 представлен вариант размещения в море заявляемого устройства для финишной очистки морских прибрежных вод, на рис.2 - второй вариант заявляемого устройства.

Первый вариант: СВП включает два пропиленовых силовых каната 1, имеющих рабочую длину 25 м и удерживаемых в горизонтальном положении металлическими тросами 2, прикрепленными к гравитационным якорям 3 через крепежные элементы плавучих буев, соединенных с силовыми канатами (на черт. не показаны). Устройство снабжено удерживаемыми на поверхности рабочими модулями 4 для размещения фукусовых водорослей размером 2×1,5 м, сформированными из синтетических канатов диаметром 10-20 мм, являющихся субстратами для фукусовых водорослей, прикрепленных к пропиленовым силовым канатам 1 или металлическим тросам посредством поплавков-кухтылей (на черт. не показаны). На силовых канатах 1 закреплены вертикальные канаты-поводцы 6, являющиеся субстратом для ламинарий, длиной 5-12 м, и снабженные грузами 7, обеспечивающими их натяжение.

При подготовке поводца 6 длиной 5 м, являющегося единичным модулем, вплетение заранее подготовленных ростков Laminaria bongardiana осуществляется по 3 растения массой 15 г вместе через каждые 25 см, всего 60 растений. Затем поводцы 6 крепятся к силовому канату 1 через каждые 50 см, и их общее число на 2-х канатах составляет 100 штук при общем количестве растений 3000 штук. Общая масса высаженных растений при этом составляет 45 кг на один канат. При массе вплетаемого экземпляра 15 г начальная общая масса растений на каждом поводце составляет примерно 900 г.

Второй вариант размещения устройства относится к конструкции СВП, более соответствующей предложенной в данной заявке. Здесь также используется линейная схема натяжения с помощью гравитационных якорей 3 силовых пропиленовых канатов 1, отличающаяся тем, что они хотя и расположены примерно так же, как и рассмотренные ранее, но использующие совершенно другой способ образования и крепления к силовым канатам модулей из субстрата в виде пропиленовых канатов различного диаметра. В этом случае на каждой стороне используется по два силовых каната с различным заглублением, снабженные металлическими распорками как по вертикали так и по горизонтали (на черт. не показаны). Дело в том, что речь идет о размещенных между двумя верхними и нижними силовыми канатами сдвоенных модулей, один из которых представляет собой решетку из каната диаметром 10-20 мм с силовым обрамлением из каната диаметром 20-30 мм. Этот модуль предназначен для высадки фукусовых, он работает в поверхностном слое морской воды и крепится к верхним силовым канатам.. Другой модуль имеет примерно такую же по конструкции верхнюю решетку, являющуюся основанием для прикрепления поводцов для подращивания ламинариевых. Таким образом, оба модуля оказываются развязанными друг от друга на тот случай, если придется верхний заменить (что, как показывает опыт Кольского залива, бывает необходимо). Заявляемое устройство снабжено сигнальными буями 8, для защиты СВП от столкновения с судами и растяжками 9, удерживающими силовые канаты 1.

Этот вариант позволяет существенным образом увеличить плотность размещения работающих модулей по сравнению с первым вариантом, увеличивая тем самым количество ростков фукусовых и ламинариевых.

Оба модуля выполняют разные роли. Так, верхний модуль собирает на свои талломы основную массу пленки НП, которые частично проникают внутрь тканей и участвуют в процессах метаболизма, а частично окисляются за счет взаимодействия с углеводородокисляющими бактериями, обитающими на поверхности талломов ламинарии, и кислородом, выделяемым водорослями. В свою очередь нижний модуль за счет большой площади талломов создает условия для развития колоний микроорганизмов, перерабатывающих диспергированные за счет волнения НП, которые выделяют кислород для верхнего модуля и поглощают различные виды ТМ, включая радиоактивные. В тканях водорослей ТМ захватываются альгиновой кислотой, создавая прочные соединения. И фукусовые, и ламинариевые водоросли, кроме того, поглощают растворенные в морской воде соединения фтора и азота, необходимые им для роста.

Использование предполагаемого изобретения позволит повысить эффективность процесса финишной и профилактической очистки морских прибрежных вод от нефтепродуктов, а также токсичных металлов и бытовых стоков.

Список использованной литературы

1. Каменщиков Ф.А., Богомольный Е.И. Удаление нефтепродуктов с водной поверхности и грунта. М. - Ижевск. 2006. 528 с.

2. Серова И.П., Петров B.C. Нефть в морях с ледовым режимом и использование биотехнологий для деструкции нефтяного загрязнения в Арктике // Арктические моря: биоиндикация, состояние среды, биотестирование и технология деструкции загрязнений. Апатиты. 1993. С.127-136.

3. Коробков В.А., Левин B.C. и др. Подводная технология. Л.: Изд-во, Судостроение, 1981. 240 с.

4. Макаров В.Н., Джус В.Е., Матишов Г.Г. и др. Научно-практические аспекты культивирования ламинарии сахаристой в Баренцевом море. Препр. Апатиты: Изд-во КНЦ РАН, 1986. 35 с.

5. Ильинский В.В. Гетеротрофный бактериопланктон: экология и роль в процессах естественного очищения среды от нефтяных загрязнений. Автореф. дисс. докт. биол. наук. Москва. МГУ, 2000. 53 с.

6. Патент РФ №2375315 С2 «Способ очистки морских прибрежных вод от пленочных и диспергированных в поверхностном слое воды нефтепродуктов». Владелец патента ООО «СИРЕНА» СПб.

7. Березовская В.А., Клочкова Н.Г. Описание изобретения к патенту «Способ оценки уровня загрязнения акватории» заявка №2000105987/13, 13.03.2000 (соответствующий патент Камч. ГТУ аннулирован 18.11.2010).

8. Христофорова Н.К. Биоиндикация и мониторинг загрязнения морских вод тяжелыми металлами. Л.: Изд-во Наука, 1989. 192 с.

9. Левин B.C., Коробков В.А. Экология шельфа. Проблемы промысла донных организмов. Л.: Изд-во ЭЛМОР, 1998. 224 с.

10. Патин С.А. Нефть и экология континентального щельфа. М.: Изд-во ВНИРО, 2001. 248 с.

11. Эмсли Дж. Элементы. М.: Изд-во Мир, 1993. 256 с.

12. Воскобойников Г.М. Механизмы адаптации, регуляции роста и перспективы использования макрофитов Баренцева моря. Автореф. дисс. докт. биол. наук. Мурманск, 2006. 465 с.

13. Селиванова О.Н. Поглощение токсических элементов некоторыми бурыми водорослями из загрязненных участков Авачинской губы // Сб. научных статей по экологии и охране окружающей среды Авачинской бухты. Петропавловск - Токио: Изд. Госкомкамчатэкологии, 1998. С.39-45.

14. Кизеветтер И.В., Суховеева М.В., Шмелькова Л.П. Промысловые морские водоросли и травы дальневосточных морей. М.: Изд-во Пищев. пром-сть, 1981. 112 с.

15. Тропин И.В. Таксономические и экологические закономерности распределения металлов в биохимических фракциях бурых водорослей Phaeophyta // Океанология. 1996. Т.36, №3. С.424-430.

16. Воскобойников Г.М. Тяжелые металлы в промысловых водорослях. // Промысловые и перспективные для использования водоросли и беспозвоночные Баренцева и Белого морей. Апатиты: Изд-во КНЦ РАН, 1998. С.250-256.

17. Барашков Г.К. Сравнительная биохимия водорослей. М.: Изд-во Пищев. пром-сть, 1972. 336 с.

18. Отчет по НИР Шифр «2009-1.1-155-070-003» // Рук. Проф. В.В.Потапов. Кам. ГТУ им. Витуса Беринга, 2010. 121 с.


УСТРОЙСТВО ДЛЯ ФИНИШНОЙ ОЧИСТКИ МОРСКИХ ПРИБРЕЖНЫХ ВОД
УСТРОЙСТВО ДЛЯ ФИНИШНОЙ ОЧИСТКИ МОРСКИХ ПРИБРЕЖНЫХ ВОД
Источник поступления информации: Роспатент

Showing 1-8 of 8 items.
10.02.2013
№216.012.24b2

Способ низкотемпературной иммобилизации жидких радиоактивных отходов

Изобретение относится к области экологии, к защите природных объектов от загрязнений жидкими радиоактивными отходами (ЖРО) и/или другими жидкими токсичными отходами (ЖТО), побочно образующимися при переработке отработанного ядерного топлива (ОЯТ) или промышленной деятельности. Способ...
Тип: Изобретение
Номер охранного документа: 0002474896
Дата охранного документа: 10.02.2013
10.11.2015
№216.013.8dc8

Способ изготовления консервов из водорослей (варианты)

Изобретение относится к технологии консервирования пищевых продуктов, а именно к производству консервов из морских водорослей. Способ изготовления консервов из водорослей и растительного сырья включает предварительную раздельную обработку сырья, измельчение, раздельную термообработку,...
Тип: Изобретение
Номер охранного документа: 0002567903
Дата охранного документа: 10.11.2015
13.01.2017
№217.015.76dc

Композиция для профилактики и лечения целлюлита (варианты) и упаковка для нее

Изобретение относится к области косметологии и представляет собой композицию для профилактики и лечения целлюлита, выполненную на основе микронизированных бурых водорослей, отличающуюся тем, что содержит сухие компоненты в порошкообразном состоянии, где в качестве бурой водоросли содержит фукус...
Тип: Изобретение
Номер охранного документа: 0002598625
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.76f1

Способы повышения прочности бетона при сжатии с использованием нанокремнезёма, полученного из гидротермального раствора

Изобретение относится к составу высокопрочного бетона и может быть использовано для изготовления изделий в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат заключается в ускорении твердения и повышении прочности при...
Тип: Изобретение
Номер охранного документа: 0002599739
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8c4f

Биологически активная добавка к пище (варианты)

Изобретение относится к пищевой промышленности, а именно к биологически активным добавкам (БАД) к пище. БАД к пище содержит, мас. %: сублимированную икру морского ежа - 50, сушеные ягоды лимонника - 2, семена пастернака или жгун-корня Моннье - 15, красный корень или корень истода тонколистного...
Тип: Изобретение
Номер охранного документа: 0002604821
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c80

Способ получения сублимированной икры морского ежа и консервант для его осуществления

Способ включает промывку сырья, смешивание его с консервантом и фасовку. Промывку осуществляют в питьевой воде, соленость которой максимально приближена к солености морской воды в местах обитания морских ежей. Смешивание производят путем погружения на 5 минут ястыков икры в емкость, содержащую...
Тип: Изобретение
Номер охранного документа: 0002604822
Дата охранного документа: 10.12.2016
29.12.2017
№217.015.fd50

Способ использования гидротермального нанокремнезема в качестве кормовой добавки

Изобретение относится к отрасли пчеловодства, в частности к способу использования гидротермального нанокремнезема в качестве кормовой добавки. Способ включает введение в рацион пчел нанокремнезема в формах золя, геля или порошка, полученных из гидротермальных растворов. Нанокремнезем используют...
Тип: Изобретение
Номер охранного документа: 0002638322
Дата охранного документа: 13.12.2017
04.04.2018
№218.016.34b2

Способ борьбы с мучнистой росой томатов в теплицах

Изобретение относится к сельскому хозяйству. В условиях защищенного грунта при выращивании томатов при первом появлении на листьях растения грибного патогена - мучнистой росы в виде белого налета - растения обрабатывают мелкодисперсными каплями золя гидротермального нанокремнезема с рабочей...
Тип: Изобретение
Номер охранного документа: 0002646058
Дата охранного документа: 01.03.2018
+ добавить свой РИД