×
10.10.2013
216.012.7416

СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области спутниковой радионавигации и может быть использовано для определения координат мест локальных повреждений объектов электрических сетей при диагностических работах на электрических сетях без вывода их из эксплуатации. Технический результат - расширение функциональных возможностей. Для этого определение координат мест повреждений осуществляется на основе координат точек тепловизионных изображений с повышенной температурой. При этом в дифференциальном режиме спутниковой радионавигационной системы рассчитывают направляющие косинусы векторов от точек центра и углов тепловизионного изображения до центра объектива камеры тепловизора в связанной с летательным аппаратом системе координат на основе значений углов обзора камеры тепловизора, определяют направляющие косинусы этих векторов в топоцентрической системе координат на основе измеренных углов пространственной ориентации летательного аппарата и матрицы поворота, выраженной через углы Эйлера, определяют расстояния от точек тепловизионного изображения до центра объектива камеры тепловизора на основе информации о высоте расположения диагностируемого объекта над землей, высоте летательного аппарата, измеренной высотомером. 4 ил., 5 табл.
Основные результаты: Способ дистанционного обследования объектов электрических сетей, по которому с летательного аппарата выполняют съемку электрических сетей с помощью тепловизора, сопряженного с приемником сигналов спутниковых радионавигационных систем и с системой измерения ориентации летательного аппарата, результаты съемки, представленные в виде серии тепловизионных изображений, передают в программно-аппаратный комплекс, отличающийся тем, что одновременно с получением тепловизионного изображения выполняют измерение высоты полета летательного аппарата высотомером, рассчитывают точные координаты летательного аппарата в дифференциальном режиме спутниковой радионавигационной системы, рассчитывают направляющие косинусы векторов от точек центра и углов тепловизионного изображения до центра объектива камеры тепловизора в связанной с летательным аппаратом системе координат на основе значений углов обзора камеры тепловизора, определяют направляющие косинусы этих векторов в топоцентрической системе координат на основе измеренных углов пространственной ориентации летательного аппарата и матрицы поворота, выраженной через углы Эйлера, рассчитывают расстояния от точек тепловизионного изображения до центра объектива камеры тепловизора на основе информации о высоте расположения диагностируемого объекта над землей, высоте летательного аппарата, измеренной высотомером, и ранее найденных значений направляющих косинусов в связанной с летательным аппаратом системе координат, определяют топоцентрические координаты точек центра и углов тепловизионного изображения на основе рассчитанных направляющих косинусов векторов от точек тепловизионного изображения до центра объектива камеры тепловизора в топоцентрической системе координат и расстояний от точек тепловизионного изображения до центра объектива камеры тепловизора и определяют географические координаты центра и углов тепловизионного изображения в соответствии с выражениями: где B, L, H - широта, долгота и высота j-й точки тепловизионного изображения;lat, lon, h - широта, долгота, высота летательного аппарата;Rlat и Rlon - радиусы кривизны меридионального и нормального сечений эллипсоида Земли; , , - найденные топоцентрические координаты j-й точки тепловизионного изображения.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области применения технологий спутниковой радионавигации для решения задач дистанционной диагностики и определения координат мест локальных повреждений объектов электрических сетей на основе съемки местности при помощи тепловизионных приемников. Изобретение может быть использовано при диагностических работах на электрических сетях без вывода их из эксплуатации.

Известен способ [1], по которому определяют координаты и пространственную ориентацию надводной подвижной станции, выполняют зондирование дна акватории акустическими сигналами и определяют координаты подводных объектов по их изображениям.

Недостатком способа является отсутствие возможности диагностики мест локальных перегревов объектов электрических сетей, кроме того, данный способ предусматривает идентификацию и определение координат одного объекта, в то время как для решения задач автоматизированной диагностики требуется получение изображений объекта диагностики с возможностью определения координат любых точек, для чего на изображении должны быть как минимум три точки с известными координатами.

Известен способ [2], основанный на аэротермографической съемке проводов воздушных линий (ВЛ) электропередач с борта вертолета и включающий съемку ВЛ с помощью тепловизора, измерение координат вертолета, выявление мест локальных перегревов ВЛ и фиксирование соответствующих координат вертолета в протоколе диагностического полета.

Недостатками данного способа являются: низкая оперативность и большая трудоемкость, обусловленные необходимостью участия нескольких специалистов одновременно в не автоматизированном процессе диагностики; низкая точность определения координат мест выявленных аварийных и предаварийных состояний энергетических объектов. Кроме того, данный способ не позволяет формировать и вести единую базу данных, отражающую эволюцию диагностируемого оборудования в разрезе повторных диагностик с точностью, позволяющей идентифицировать каждый объект ВЛ в отдельности.

Известен способ дистанционного обследования объектов электрических сетей с помощью тепловидеосъемочного устройства [3], взятый в качестве прототипа, по которому с летательного аппарата (ЛА) выполняют съемку линии электропередачи с помощью тепловизора, сопряженного с приемником сигналов спутниковых радионавигационных систем и системой измерения ориентации ЛА, результаты съемки, представленные в виде серии тепловизионных изображений передают, сохраняют и подвергают обработке в программно-аппаратном комплексе.

Недостатком известного способа является невозможность его использования в реальном времени. Известный способ включает в себя вычислительно емкие процедуры, осуществляемые в постобработке: геометрическое трансформирование и корреляционно-экстремальный анализ тепловизионных изображений, поиск точек с известными с геодезической точностью координатами на тепловизионных изображениях.

В основу изобретения положена задача определения в реальном времени координат тепловизионных изображений диагностируемых объектов электрических сетей в дистанционном режиме, без использования операций: геометрического трансформирования и корреляционно-экстремального анализа тепловизионных изображений, поиска точек с известными с геодезической точностью координатами на тепловизионных изображениях.

Поставленная задача решается тем, что в способе дистанционного обследования объектов электрических сетей, по которому с летательного аппарата выполняют съемку электрических сетей с помощью тепловизора, сопряженного с приемником сигналов спутниковых радионавигационных систем и с системой измерения ориентации летательного аппарата, результаты съемки, представленные в виде серии тепловизионных изображений, передают в программно-аппаратный комплекс, согласно изобретению, одновременно с получением тепловизионного изображения выполняют измерение высоты полета летательного аппарата высотомером, рассчитывают точные координаты летательного аппарата в дифференциальном режиме спутниковой радионавигационной системы, рассчитывают направляющие косинусы векторов от точек центра и углов тепловизионного изображения до центра объектива камеры тепловизора в связанной с летательным аппаратом системе координат на основе значений углов обзора камеры тепловизора, определяют направляющие косинусы этих векторов в топоцентрической системе координат на основе измеренных углов пространственной ориентации летательного аппарата и матрицы поворота, выраженной через углы Эйлера, рассчитывают расстояния от точек тепловизионного изображения до центра объектива камеры тепловизора на основе информации о высоте расположения диагностируемого объекта над землей, высоте летательного аппарата, измеренной высотомером, и ранее найденных значений направляющих косинусов в связанной с летательным аппаратом системе координат, определяют топоцентрические координаты точек центра и углов тепловизионного изображения на основе рассчитанных направляющих косинусов векторов от точек тепловизионного изображения до центра объектива камеры тепловизора в топоцентрической системе координат и расстояний от точек тепловизионного изображения до центра объектива камеры тепловизора и определяют географические координаты центра и углов тепловизионного изображения в соответствии с выражениями:

,

Bj, Lj, Hj - широта, долгота и высота j-й точки тепловизионного изображения;

lat, lon, h - широта, долгота, высота летательного аппарата;

Rlat и Rlon - радиусы кривизны меридионального и нормального сечений эллипсоида Земли;

, , - найденные топоцентрические координаты j-й точки тепловизионного изображения.

Заявляемый способ дистанционного обследования объектов электрических сетей поясняется прилагаемыми чертежами, в которых на

фиг.1 изображена структурная схема возможного устройства дистанционного обследования объектов электрических сетей для реализации предложенного способа; на фиг.2 изображена связанная с летательным аппаратом система координат; на

фиг.3 изображена блок-схема алгоритма работы вычислительного блока, реализующего алгоритм дистанционного обследования объектов электрических сетей в соответствии с предлагаемым способом; на фиг.4 приведена зависимость погрешностей определения координат точки тепловизионного изображения от углов азимута и крена ЛА, полученная в результате статистического моделирования предлагаемого способа.

Устройство дистанционного обследования объектов электрических сетей содержит n навигационных спутников 11, …, 1n, контрольно-корректирующую станцию 2 и диагностическую станцию 3. Контрольно-корректирующая станция 2 включает в себя последовательно соединенные первую приемную антенну 41 спутниковых сигналов, первый приемник 51 спутниковых сигналов, вычислитель поправок 6, модулятор 7, передатчик 8 корректирующей информации и передающую антенну 9 корректирующей информации, а также вычислитель 10 эталонных значений радионавигационных параметров, выходом соединенный со вторым входом вычислителя поправок 6. Диагностическая станция 3 содержит последовательно соединенные приемную антенну 11 корректирующей информации, приемник 12 корректирующей информации и демодулятор 13, подключенный к соответствующему входу вычислительного блока 14. Диагностическая станция 3 также включает последовательно соединенные вторую антенну 42 спутниковых сигналов и второй приемник 52 спутниковых сигналов, последовательно соединенные третью антенну 43 спутниковых сигналов и третий приемник 53 спутниковых сигналов, последовательно соединенные четвертую антенну 44 спутниковых сигналов и четвертый приемник 54 спутниковых сигналов. При этом выход каждого из указанных приемников спутниковых сигналов 52, 53 и 54 подключен к соответствующему входу вычислительного блока 14, своим выходом соединенного с одним из входов формирователя 15 синхронизирующих сигналов, второй вход которого подключен ко второму выходу второго приемника 52 спутниковых сигналов, а выход соединен с входом тепловизора 16, выход которого соединен с соответствующим входом вычислительного блока 14. К вычислительному блоку 14 также подключены блок высотомера 17 и блок управления и индикации 18.

Предлагаемый способ дистанционного обследования объектов электрических сетей можно осуществить следующим образом.

Наземная контрольно-корректирующая станция 2 первой приемной антенной 41 спутниковых сигналов принимает сигналы навигационных спутников 11, …, 1n и определяет радионавигационные параметры по каждому из спутников. С первого приемника 51 спутниковых сигналов эти значения радионавигационных параметров поступают на вход вычислителя поправок 6, второй вход которого соединен с вычислителем 10 эталонных значений радионавигационных параметров, определяющим эталонные значения радионавигационных параметров на основе эталонных координат фазового центра первой приемной антенны 41 ХКСЭ, YКСЭ, ZКСЭ и эфемерид Xэф1-Xэфn, Yэф1-Yэфn, Zэф1-Zэфn каждого из навигационных спутников. Вычислитель поправок 6 вырабатывает значения поправок радионавигационных параметров по каждому из спутников одним из известных методов, например в соответствии с [5]:

, где i - номер навигационного спутника.

С выхода вычислителя поправок 6 сигналы, в которых содержится информация о номере спутника, времени приема навигационного сигнала, поправках к радионавигационным параметрам до каждого спутника ΔR1-ΔRn, поступают на модулятор 7. С выхода модулятора 7 сигналы поступают в передатчик 8 корректирующей информации, где преобразуются, усиливаются и излучаются в пространство передающей антенной 9 корректирующей информации.

Диагностическая станция 3, находящаяся на борту ЛА, приемной антенной 11 корректирующей информации принимает сигналы контрольно-корректирующей станции 2. Эти сигналы поступают на вход приемника 12 корректирующей информации, в котором происходит усиление, преобразование и выделение сигналов контрольно-корректирующей станции 2. С выхода приемника 12 корректирующей информации эти сигналы поступают на вход демодулятора 13, выделяющего из сигналов информацию о номере спутника, времени приема сигнала и поправках радионавигационных параметров ΔR1-ΔRn, сформированных вычислителем поправок 6 контрольно-корректирующей станции 2. С выхода демодулятора 13 эта информация поступает в вычислительный блок 14.

Одновременно сигналы навигационных спутников 11, …, 1n принимаются второй 42, третьей 43 и четвертой 44 приемными антеннами спутниковых сигналов. Второй 52, третий 53 и четвертый 54 приемники спутниковых сигналов производят определение радионавигационных параметров , и - c выхода второго 52, третьего 53 и четвертого 54 приемников спутниковых сигналов информация о номерах спутников, времени приема сигналов и значениях радионавигационных параметров , и поступает в вычислительный блок 14, который выполняет коррекцию радионавигационных параметров , и , измеренных вторым 52, третьим 53 и четвертым 54 приемниками спутниковых сигналов, одним из известных методов, например в соответствии с [5]:

, , .

В результате этой коррекции получают точные значения радионавигационных параметров , и , которые используют для вычисления точных координат второй 42, третьей 43 и четвертой 44 приемных антенн спутниковых сигналов по одному из известных алгоритмов, приведенных, например в [5].

Приемные антенны 42, 43 и 44 спутниковых сигналов располагаются на диагностическом ЛА, что позволяет определить угол kr поворота вокруг оси OXb - крен, угол места um поворота вокруг оси OYb - дифферент, угол азимута az поворота вокруг оси OZb - дирекционный угол по разностям радионавигационных параметров и , например, по алгоритму, приведенному на стр.206-208 в [5].

После вычислений точных координат и углов пространственной ориентации ЛА с вычислительного блока 14 выдается управляющий сигнал на формирователь синхронизирующих сигналов 15.

Со второго выхода второго приемника 52 спутниковых сигналов на вход формирователя 15 синхронизирующих сигналов поступает опорная частота, например 10 МГц, как предложено в [5], из которой формируются необходимые сигналы с частотами, обеспечивающими синхронизацию работы блока тепловизора 16 с вычислительным блоком 14. Блок тепловизора 16, выход которого связан с соответствующим входом вычислительного блока 14, используется для диагностики объектов электрических сетей.

С выхода блока высотомера 17 информация о текущей высоте полета ЛА над землей dh поступает на вход вычислительного блока 14. Затем, исходя из полученных координат приемной антенны 42 спутниковых сигналов, углов азимута, места и крена ЛА, высоты полета ЛА над землей dh с использованием заданных углов обзора камеры тепловизора ax и ay, осуществляется вычисление координат точек центра и углов тепловизионного изображения.

Для выполнения указанных вычислений может быть использована связанная с ЛА прямоугольная система координат (СК), приведенная на фиг.2. Начало данной СК соответствует центру объектива камеры тепловизора, а ее оси образуют правую систему координат (ось OXb направлена по продольной оси ЛА вперед, ось OYb направлена вправо, ось OZb направлена вертикально вниз).

Исходя из этого, центр объектива камеры тепловизора находится в точке O (фиг.2) с координатами (0, 0, 0). Кроме того, в дальнейших расчетах полагается, что поле зрения камеры тепловизора представляет собой прямоугольник, стороны которого параллельны осям OXb и OYb системы координат, связанной с ЛА, а камера тепловизора сориентирована так, что ее оптическая ось совпадает с направлением оси OZb данной СК. В этом случае центр поля зрения камеры тепловизора будет иметь координаты (0, 0, h). Величины приращений координат dx и dy, показанные на фиг.2, принимают следующие значения:

ax, ay - углы обзора камеры тепловизора в направлении продольной и поперечной осей его объектива, соответственно, в связанной с ЛА системе координат;

h - высота полета ЛА.

Тогда для пяти векторов от центра объектива камеры тепловизора до точек, принадлежащих центру, левому нижнему, левому верхнему, правому верхнему и правому нижнему углам тепловизионного изображения, соответственно, могут быть найдены значения направляющих косинусов ks0, …, ks4 в СК, связанной с ЛА:

,

dx и dy - приращения (2) координат точек центра и углов тепловизионного изображения в СК, связанной с ЛА.

Для дальнейших вычислений может быть использована топоцентрическая СК, представляющая собой трехмерную прямоугольную СК с центром, находящимся в точке расположения центра объектива камеры тепловизора. Оси данной СК направлены следующим образом: ось OXn направлена на Север, ось OYn - на Восток, ось OZn - вниз, к центру масс Земли.

Переход от направляющих косинусов точек центра и углов тепловизионного изображения ks0, …, ks4 (3) в СК, связанной с ЛА, и углов азимута az, места um и крена kr ЛА к направляющим косинусам kn0, …, kn4 в топоцентрической СК осуществим в соответствии с выражениями [4]:

С - матрица поворота [4], выраженная через углы Эйлера:

При выполнении дальнейших расчетов, в целях упрощения, поверхность Земли, находящаяся в поле зрения камеры тепловизора полагается плоской.

Исходя из этого, расстояния r0, …, r4 от точек центра и углов тепловизионного изображения до центра объектива камеры тепловизора как частное высоты dh и z - составляющей каждого из направляющих косинусов определяются как:

Тогда координаты точек тепловизионного изображения xn0, …, xn4 в плоскости пересечения с Землей в топоцентрической СК представляют собой произведение расстояний r0, …, r4 на соответствующие значения направляющих косинусов:

Пересчет полученных топоцентрических координат (7) точек тепловизионного изображения в географические координаты осуществляется на основе соотношений [4]:

lat, lon, h - широта, долгота, высота ЛА;

Rlat и Rlon - радиусы кривизны меридионального и нормального сечений эллипсоида Земли.

Значения Rlat и Rlon определяются как [4]:

R0 - экваториальный радиус Земли;

e2=2s-s2 - квадрат эксцентриситета эллипсоида Земли;

s - геометрическое сжатие эллипсоида Земли.

Значения координат точек центра и углов тепловизионного изображения, вычисленные в соответствии с (8), а также само тепловизионное изображение, введенное из блока тепловизора 16 поступают в блок управления и индикации 18 для последующего отображения.

Вычислительный блок 14 выполняет циклическую обработку вводимой информации в соответствии с блок-схемой алгоритма, приведенной на фиг.3.

Вычислительный блок 14 можно реализовать на основе современных быстродействующих микропроцессоров семейства Intel по типовой структуре, описанной, например на стр.48 в [6].

Техническим результатом заявляемого способа является получение электронных тепловизионных изображений объектов электрических сетей, имеющих координатную привязку. Получение координатно привязанных тепловизионных изображений осуществляется в реальном времени в процессе облета объектов электрических сетей летательными аппаратами. Определение координат мест повреждений осуществляется на основе координат точек тепловизионных изображений с повышенной температурой.

Рассмотрим конкретный пример.

Пусть камера тепловизора находится в точке с координатами lat=56°0' Северной широты и lon=92°0' Восточной долготы на высоте h=400 м над заданным эллипсоидом, например, WGS-84. Параметры угловой ориентации ЛА: угол азимута az=-150°; угол места um=-10°; угол крена kr=-15°. Углы обзора камеры тепловизора: ax=29°; ay=22°. Высота ЛА над землей, определяемая при помощи высотомера, составляет dh=100 м.

В результате моделирования получены:

1. Значения направляющих косинусов (3) векторов от центра объектива камеры тепловизора до точек центра и углов тепловизионного изображения в связанной с ЛА системе координат, приведенные в таблице 1.

Табл.1
Значение по координате Значения направляющих косинусов
ks0 ks1 ks2 ks3 ks4
X 0 -0,259 0,259 0,259 -0,259
Y 0 -0,194 -0,194 0,194 0,194
Z 1 0,946 0,946 0,946 0,946

2. Значения направляющих косинусов (4) векторов в топоцентрической СК, приведенные в таблице 2.

Табл.2
Значение по Значения направляющих косинусов
координате kn0 kn1 kn2 kn3 kn4
X 0,275 0,394 -0,047 0,126 0,567
Y -0,014 0,162 -0,093 -0,427 -0,172
Z -0,951 0,905 0,995 0,895 0,806

3. Значения расстояний (6) от точек центра и углов тепловизионного изображения до центра объектива камеры тепловизора, приведенные в таблице 3.

Табл.3
Значение расстояния, м
r0 r1 r2 r3 r4
105,125 110,53 100,548 111,675 124,125

4. Значения топоцентрических координат (7) точек центра и углов тепловизионного изображения, приведенные в таблице 4.

Табл.4
Значение по координате Значения топоцентрических координат, м
xn0 xn1 xn2 xn3 xn4
X 28,875 43,566 -4,724 14,031 70,351
Y -14,747 17,86 -9,362 -47,691 -21,394
Z 100 100 100 100 100

5. Значения географических координат точек центра и углов тепловизионного изображения (8), приведенные в таблице 5.

Табл.5
Значение по координате Значения географических координат
BLH0 BLH1 BLH2 BLH3 BLH4
долгота, ° 56,0002593 56,0003913 55,9999576 56,0001260 56,0006318
широта, ° 91,9997636 92,0002862 91,9998499 91,9992356 91,9996571
высота, м 300 300 300 300 300

Приведенные результаты расчетов подтверждают возможность определения координат точек центра и углов тепловизионного изображения на основании измеренных значений координат, угловой ориентации и высоты полета ЛА над Землей.

Для оценки погрешностей определения координат точек центра и углов тепловизионного изображения был использован метод статистического моделирования по результатам обработки 200 независимых испытаний для каждой точки.

Кроме того, путем статистического моделирования произведен расчет зависимости среднеквадратического отклонения (СКО) погрешности определения координат точки правого нижнего угла тепловизионного изображения σr от угла азимута ЛА, для следующих значений угла крена ЛА kr=0°, 30°, в соответствии с выражением:

σX, σY, σZ - СКО определения прямоугольных топоцентрических координат точки правого нижнего угла тепловизионного изображения.

Расчет произведен для следующих исходных данных:

- σdh=10 м - СКО погрешности определения высоты ЛА над землей при помощи высотомера;

- σlat=0,032", σlon=0,058" - СКО погрешности определения географических координат ЛА при помощи приемника спутниковых сигналов (указанные значения σlat и σlon соответствуют СКО погрешности σ=1 м определения координат ЛА в горизонтальной плоскости);

- σh=10 м - СКО погрешности определения высоты ЛА при помощи приемника спутниковых сигналов;

- σaz=10', σum=20', σkr=20' - среднеквадратические погрешности определения азимута, угла места и крена ЛА;

- z=200 - число статистических испытаний в каждом заданном значении азимута ЛА.

Зависимости СКО погрешности определения координат точки правого нижнего угла тепловизионного изображения σr (10) от азимута ЛА в диапазоне 0°-360° для двух значений крена ЛА 0° и 30° приведены на фиг.4. Полученные результаты показывают, что погрешность определения координат данной точки тепловизионного изображения не превышают 15 м.

Аналогичные результаты получены для остальных точек тепловизионного изображения.

Полученная погрешность определения координат мест локальных повреждений объектов электрических сетей является достаточной для локализации повреждений и осуществления качественной диагностики.

Таким образом, предлагаемый способ дистанционного обследования объектов электрических сетей, в отличие от известного способа, обеспечивает определение в реальном времени координат тепловизионных изображений диагностируемых объектов электрических сетей в дистанционном режиме.

Литература

1. Пат. 2381518 Российская Федерация. Устройство для определения координат подводных объектов / Валиханов М.М., Алешечкин A.M., Кокорин В.И. // Опубл. 2010, Бюл. №4.

2. РД 153-34.0-20.363-99. Методики инфракрасной диагностики электрооборудования и ВЛ., 2000.

3. Пат.2258204 Российская Федерация. Способ дистанционного обследования объектов энергетических сетей с помощью тепловидеосъемочного устройства / Кузнецов А.Е., Калюжный В.И., Ковалев А.О., Ефремов И.Ф., Гектин Ю.М. // Опубл. 10.08.2005, Бюл. №22.

4. Groves, P. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems [Текст] / P.D.Groves. - Boston, London.: Artech House, 2008. - 507 c.

5. Шебшаевич B.C. Сетевые спутниковые радионавигационные системы / B.C. Шебшаевич, П.П. Дмитриев, Н.В. Иванцевич; Под ред. B.C.Шебшаевича. - М.: Радио и связь. 1993.

6. Микропроцессоры Intel: 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4. Архитектура, программирование и интерфейсы. Шестое издание: Пер. с англ. - СПб.: БХВ-Петербург, 2005, 1328 с: ил.

7. Правила устройства электроустановок ПУЭ, 7-е изд. Глава 2.5.

Способ дистанционного обследования объектов электрических сетей, по которому с летательного аппарата выполняют съемку электрических сетей с помощью тепловизора, сопряженного с приемником сигналов спутниковых радионавигационных систем и с системой измерения ориентации летательного аппарата, результаты съемки, представленные в виде серии тепловизионных изображений, передают в программно-аппаратный комплекс, отличающийся тем, что одновременно с получением тепловизионного изображения выполняют измерение высоты полета летательного аппарата высотомером, рассчитывают точные координаты летательного аппарата в дифференциальном режиме спутниковой радионавигационной системы, рассчитывают направляющие косинусы векторов от точек центра и углов тепловизионного изображения до центра объектива камеры тепловизора в связанной с летательным аппаратом системе координат на основе значений углов обзора камеры тепловизора, определяют направляющие косинусы этих векторов в топоцентрической системе координат на основе измеренных углов пространственной ориентации летательного аппарата и матрицы поворота, выраженной через углы Эйлера, рассчитывают расстояния от точек тепловизионного изображения до центра объектива камеры тепловизора на основе информации о высоте расположения диагностируемого объекта над землей, высоте летательного аппарата, измеренной высотомером, и ранее найденных значений направляющих косинусов в связанной с летательным аппаратом системе координат, определяют топоцентрические координаты точек центра и углов тепловизионного изображения на основе рассчитанных направляющих косинусов векторов от точек тепловизионного изображения до центра объектива камеры тепловизора в топоцентрической системе координат и расстояний от точек тепловизионного изображения до центра объектива камеры тепловизора и определяют географические координаты центра и углов тепловизионного изображения в соответствии с выражениями: где B, L, H - широта, долгота и высота j-й точки тепловизионного изображения;lat, lon, h - широта, долгота, высота летательного аппарата;Rlat и Rlon - радиусы кривизны меридионального и нормального сечений эллипсоида Земли; , , - найденные топоцентрические координаты j-й точки тепловизионного изображения.
СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
СПОСОБ ДИСТАНЦИОННОГО ОБСЛЕДОВАНИЯ ОБЪЕКТОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
Источник поступления информации: Роспатент

Showing 1-10 of 65 items.
10.03.2013
№216.012.2d8e

Способ получения слитка из сплавов цветных металлов

Изобретение относится к металлургии цветных металлов и сплавов. Расплав металла подают в область действия электромагнитного поля индуктора 1, которое удерживает расплав от растекания в области кристаллизации. Непосредственно на расплав подается охлаждающая жидкость 6. В результате воздействия...
Тип: Изобретение
Номер охранного документа: 0002477193
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2fc4

Способ получения полимерного нанокомпозиционного материала

Изобретение относится к плазменной технологии, а именно к способу плазменной обработки дисперсного материала. Может использоваться для получения покрытых полимерных порошковых нанокомпозиционных материалов. Полимерный порошок помещают в разрядную камеру с электродной системой, которую затем...
Тип: Изобретение
Номер охранного документа: 0002477763
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.3443

Стенд для испытания зубчатых передач по замкнутому силовому контуру

Изобретение относится к испытательной технике, а именно к стендам для испытания механических передач, и может применяться, в частности, для испытания зубчатых передач при их изготовлении или в процессе эксплуатации. Устройство содержит привод, связанный через входной вал с испытуемыми зубчатыми...
Тип: Изобретение
Номер охранного документа: 0002478922
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3557

Способ производства хлебобулочных изделий из замороженных полуфабрикатов

Изобретение относится к области пищевой промышленности. Способ включает замес дрожжевого теста из муки пшеничной, хлебопекарных дрожжей, поваренной соли, воды, брожение теста, последующее формование мелкоштучных изделий, расстойку и шоковое замораживание полуфабрикатов при температуре -35°С до...
Тип: Изобретение
Номер охранного документа: 0002479208
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.37e1

Электроразведочное устройство

Изобретение относится к области электроразведки, в частности к методам вызванной поляризации (ВП), и может быть использовано для поиска полезных ископаемых в исследуемом геологическом разрезе на основе определения коэффициента вызванной поляризации. Технический результат: увеличение...
Тип: Изобретение
Номер охранного документа: 0002479858
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.386f

Способ производства хлебобулочных изделий из полувыпеченных замороженных полуфабрикатов

Изобретение относится к области пищевой промышленности. Способ включает приготовление дрожжевого теста, брожение теста, выпекание полуфабрикатов до полуготовности, их замораживание, длительное хранение замороженных полуфабрикатов, размораживание и выпекание до готовности. Для улучшения...
Тип: Изобретение
Номер охранного документа: 0002480008
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3b81

Способ геоэлектроразведки и устройство для его осуществления

Изобретение относится к геоэлектроразведке с использованием электромагнитного поля изменяющейся частоты и может быть применено при выполнении различного рода поисковых и инженерно-геологических исследований. Технический результат: повышение точности, достоверности и информативности измерений...
Тип: Изобретение
Номер охранного документа: 0002480794
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4dc0

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может быть использовано для определения их ресурса. Заявлен способ определения термоокислительной стабильности смазочных материалов, при котором пробу смазочного материала постоянного объема нагревают с перемешиванием в...
Тип: Изобретение
Номер охранного документа: 0002485486
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e60

Устройство для фокусировки типа "линза люнеберга"

Изобретение относится к области конструирования направленных антенн, а именно к конструированию устройств для фокусировки при приеме-передаче радиоволн сантиметрового и миллиметрового диапазонов. Техническим результатом является возможность осуществления фокусировки электромагнитной волны вдоль...
Тип: Изобретение
Номер охранного документа: 0002485646
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5037

Грузоподъемный механизм

Изобретение относится к подъемному оборудованию, используемому для подъема-опускания груза на различных видах транспорта, в складах и производственных помещениях. Грузоподъемный механизм содержит основание с горизонтальным полым штырем, внутри которого размещен толкатель с роликами, шарнирно...
Тип: Изобретение
Номер охранного документа: 0002486128
Дата охранного документа: 27.06.2013
Showing 1-10 of 64 items.
27.01.2013
№216.012.208c

Устройство для бестраншейной замены подземных трубопроводов

Изобретение относится к устройствам для бестраншейной замены подземных трубопроводов. В устройстве направляющее приспособление выполнено в виде цилиндрического корпуса, в котором напротив друг друга установлены два равноудаленных опорных катка. На внешней поверхности корпуса по окружности...
Тип: Изобретение
Номер охранного документа: 0002473833
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.241a

Устройство для бестраншейной замены подземных трубопроводов

Изобретение относится к устройствам для бестраншейной замены подземных трубопроводов. Устройство содержит труборазрушающий рабочий орган в виде двух верхних и двух нижних вилок, подвижно соединенных между собой и установленных на осях. Каждая из вилок с обоих концов соединена с одной вилкой,...
Тип: Изобретение
Номер охранного документа: 0002474744
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d8e

Способ получения слитка из сплавов цветных металлов

Изобретение относится к металлургии цветных металлов и сплавов. Расплав металла подают в область действия электромагнитного поля индуктора 1, которое удерживает расплав от растекания в области кристаллизации. Непосредственно на расплав подается охлаждающая жидкость 6. В результате воздействия...
Тип: Изобретение
Номер охранного документа: 0002477193
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2fc4

Способ получения полимерного нанокомпозиционного материала

Изобретение относится к плазменной технологии, а именно к способу плазменной обработки дисперсного материала. Может использоваться для получения покрытых полимерных порошковых нанокомпозиционных материалов. Полимерный порошок помещают в разрядную камеру с электродной системой, которую затем...
Тип: Изобретение
Номер охранного документа: 0002477763
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.3443

Стенд для испытания зубчатых передач по замкнутому силовому контуру

Изобретение относится к испытательной технике, а именно к стендам для испытания механических передач, и может применяться, в частности, для испытания зубчатых передач при их изготовлении или в процессе эксплуатации. Устройство содержит привод, связанный через входной вал с испытуемыми зубчатыми...
Тип: Изобретение
Номер охранного документа: 0002478922
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3557

Способ производства хлебобулочных изделий из замороженных полуфабрикатов

Изобретение относится к области пищевой промышленности. Способ включает замес дрожжевого теста из муки пшеничной, хлебопекарных дрожжей, поваренной соли, воды, брожение теста, последующее формование мелкоштучных изделий, расстойку и шоковое замораживание полуфабрикатов при температуре -35°С до...
Тип: Изобретение
Номер охранного документа: 0002479208
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.37e1

Электроразведочное устройство

Изобретение относится к области электроразведки, в частности к методам вызванной поляризации (ВП), и может быть использовано для поиска полезных ископаемых в исследуемом геологическом разрезе на основе определения коэффициента вызванной поляризации. Технический результат: увеличение...
Тип: Изобретение
Номер охранного документа: 0002479858
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.386f

Способ производства хлебобулочных изделий из полувыпеченных замороженных полуфабрикатов

Изобретение относится к области пищевой промышленности. Способ включает приготовление дрожжевого теста, брожение теста, выпекание полуфабрикатов до полуготовности, их замораживание, длительное хранение замороженных полуфабрикатов, размораживание и выпекание до готовности. Для улучшения...
Тип: Изобретение
Номер охранного документа: 0002480008
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3b81

Способ геоэлектроразведки и устройство для его осуществления

Изобретение относится к геоэлектроразведке с использованием электромагнитного поля изменяющейся частоты и может быть применено при выполнении различного рода поисковых и инженерно-геологических исследований. Технический результат: повышение точности, достоверности и информативности измерений...
Тип: Изобретение
Номер охранного документа: 0002480794
Дата охранного документа: 27.04.2013
10.06.2013
№216.012.4833

Сырьевая смесь для изготовления керамических теплоизоляционных строительных материалов

Изобретение относится к составам сырьевых смесей для изготовления керамических теплоизоляционных материалов и может быть использовано для производства теплоизоляционной керамики при строительстве жилых, гражданских и промышленных зданий. Технический результат заключается в повышении прочности...
Тип: Изобретение
Номер охранного документа: 0002484063
Дата охранного документа: 10.06.2013
+ добавить свой РИД