×
27.09.2013
216.012.70d2

Результат интеллектуальной деятельности: СПОСОБ ОПТИЧЕСКОЙ НАКАЧКИ ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике формирования импульсов тока в устройствах оптической накачки лазеров, например в источниках светодиодной накачки или в источниках питания импульсных газонаполненных ламп накачки с разрядом через лампу накопительного конденсатора. Достигаемый технический результат - повышение эффективности накачки лазера при имеющихся ограничениях на величину и энергию импульса тока, протекающего через оптический источник. Способ оптической накачки лазера с модулированной добротностью заключается в освещении активного элемента лазера импульсным излучением оптического источника, возбуждаемого импульсом тока заданной длительности, поддерживаемого в процессе накачки в регулируемых пределах, величину тока через оптический источник изменяют в течение импульса так, чтобы энергия выходного излучения лазера была максимально возможной при заданных ограничениях на максимальное и минимальное значения тока накачки и на величину энергии импульса тока, причем момент включения добротности лазера и характер зависимости тока накачки от времени определяют предварительно путем измерения выходной энергии лазера при изменении времени включения добротности и тока накачки в заданных пределах. 4 з.п. ф-лы, 3 ил.

Изобретение относится к технике формирования импульсов тока в устройствах оптической накачки лазеров, например, в источниках светодиодной накачки или в источниках питания импульсных газонаполненных ламп накачки с разрядом через лампу накопительного конденсатора.

Известен способ накачки твердотельного лазера [1] с помощью импульсной лампы накачки, через которую производится разряд накопительного конденсатора путем пробоя разрядного промежутка лампы и пропускания через лампу разрядного импульса тока заданной длительности Т, определяемой емкостью накопительного конденсатора и индуктивностью дросселя в разрядном контуре. Схемы, реализующие такой способ, обладают большими потерями энергии в контуре, поскольку ток через лампу в процессе разряда меняется в широких пределах и значительную часть времени отличается от оптимального значения, при котором светоотдача лампы максимальна. Это особенно заметно при формировании импульсов тока длительностью 1 мс и более, требуемой, например, для накачки лазеров на стекле с эрбием, работающих в безопасном диапазоне длин волн. Кроме того, для формирования электрических процессов такой длительности требуется большая индуктивность дросселя, что ведет к ухудшению массогабаритных показателей и надежности.

Наиболее близким по технической сущности к предлагаемому изобретению является способ оптической накачки лазера с модулированной добротностью, заключающийся в освещении активного элемента лазера импульсным излучением оптического источника, возбуждаемого импульсом тока заданной длительности, поддерживаемого в процессе накачки в регулируемых пределах [2].

Указанный способ не позволяет полностью реализовать ресурс первичного энергетического источника вследствие потерь энергии в ходе накачки, обусловленных релаксационными процессами в накачиваемой активной среде лазера.

Задачей изобретения является повышение эффективности накачки лазера при имеющихся ограничениях на величину и энергию импульса тока, протекающего через оптический источник.

Эта задача решается за счет того, что в известном способе оптической накачки лазера с модулированной добротностью, заключающемся в освещении активного элемента лазера импульсным излучением оптического источника, возбуждаемого импульсом тока заданной длительности, поддерживаемого в процессе накачки в регулируемых пределах, величину тока через оптический источник изменяют в течение импульса так, чтобы энергия выходного излучения лазера была максимально возможной при заданных ограничениях на максимальное и минимальное значения тока накачки и на величину энергии импульса тока, причем момент включения добротности лазера и характер зависимости тока накачки от времени определяют предварительно путем измерения выходной энергии лазера при изменении времени включения добротности и тока накачки в заданных пределах.

Форма импульса тока накачки I(t) может быть задана в виде I(t)=Imin+kt, где t - текущее время; Imin - минимально допустимое значения тока накачки, а k - коэффициент, определяемый экспериментально с учетом заданных ограничений на величину энергии тока накачки в течение времени T и с учетом условия I(T)=I0+kT<Imax>где Imax -предельно допустимое значение тока; Т - длительность импульса накачки.

Форма импульса тока накачки I(t) может быть задана в виде I(t)=Imin+kt2, где t - текущее время; Imin - минимально допустимое значения тока накачки, а k - коэффициент, определяемый экспериментально с учетом заданных ограничений на величину энергии тока накачки в течение времени Тис учетом условия I(T)=I0+kT<Imax; где Imax - предельно допустимое значение тока; Т - длительность импульса накачки.

Форму импульса тока накачки I(t) можно задать в виде I(t)=Imin при 0≤t≤Т1, I(t)=Imax при Т1≤t≤Т, где t - текущее время; Imin и Imax - соответственно минимально и максимально допустимые значения тока накачки, Т длительность импульса тока накачки, а 0≤Ti≤Т момент времени, устанавливаемый экспериментально, так, чтобы энергия лазерного импульса была максимальной при заданных ограничениях на величину энергии тока накачки в течение времени Т.

Форму импульса тока накачки I(t) можно также задать в виде I(t)=Imin+k(eαt-1), где t - текущее время; Imin - минимально допустимое значения тока накачки, а k и α - коэффициенты, определяемые экспериментально с учетом заданных ограничений на величину энергии тока накачки в течение времени T и с учетом I(T)=Imin+k (eαT-1)≤Imax, где Imax - предельно допустимое значение тока накачки, а T - длительность импульса тока накачки.

На чертеже фиг.1 представлена схема генератора импульсов тока накачки. На фиг.2 и 3 представлены временные диаграммы тока накачки и степени возбуждения активной среды лазера (уровня накачки) соответственно для случаев с пилообразным и со ступенчатым изменением тока в процессе накачки.

Генератор представляет собой разрядный контур, состоящий из последовательно включенных накопительного конденсатора 1, дросселя 2, импульсной газонаполненной лампы 3, транзисторного ключа 4 со схемой управления 5 и датчика тока обратной связи - сопротивления 6. Цепь дроссель - лампа зашунтирована демпфирующим диодом 7. Заряд накопительного конденсатора осуществляется от внешнего источника 9. Ионизация разрядного промежутка лампы (пробой) производится внешней схемой поджига 10. Схема управления имеет дополнительный вход, на который поступает управляющий сигнал от программного регулятора порога 8.

В указанной схеме предлагаемый способ осуществляется следующим образом.

В исходном состоянии накопительный конденсатор 1 заряжен до номинального напряжения. Транзисторный ключ 4 открыт, а лампа 3 закрыта. После ее пробоя с помощью внешней схемы поджига 10 конденсатор 1 начинает разряжаться в разрядном контуре. Поджиг может осуществляться через дополнительную обмотку дросселя [2], или подачей поджигающего высоковольтного импульса на основной или дополнительный электрод лампы [1]. После пробоя разрядного промежутка ток через лампу постепенно нарастает со скоростью, определяемой емкостью накопительного конденсатора и индуктивностью дросселя. Падение напряжения на датчике тока 6 пропорционально протекающему через него току. Как только ток достигнет верхней границы заданного программным регулятором порога 8 номинального интервала, напряжение на датчике 6 вызывает срабатывание схемы управления 5, которая формирует управляющий импульс заданной длительности, подаваемый на вход транзисторного ключа 4 и запирающий ключ. При закрытом ключе 4 ток через лампу поддерживается по малому контуру дроссель - лампа - демпфирующий диод за счет энергии, накопленной в дросселе. Этот ток убывает экспоненциально с постоянной времени τL=LRL, где RL - суммарное сопротивление лампы и демпфирующего диода.

В течение управляющего импульса ток через лампу, поддерживаемый за счет энергии, накопленной в дросселе, снижается до нижней границы заданного номинального интервала тока накачки. По окончании управляющего импульса схема управления снова открывает ключ 4. После этого питание лампы осуществляется за счет энергии, содержащейся в накопительном конденсаторе, и ток через лампу растет, пока не достигнет верхней границы. Описанный процесс повторяется до тех пор, пока не будет исчерпан заряд накопительного конденсатора. После этого по истечении времени T импульс тока через лампу прекращается.

Программный регулятор порога в течение импульса разрядного тока изменяет порог срабатывания схемы управления 5 таким образом, чтобы величина разрядного тока, соответствующая падению напряжения на датчике тока 6 в каждый момент времени соответствовала заданной зависимости, например, по методу временной автоматической регулировки порога (ВАРП), используемой для программного управления порогом срабатывания фотоприемных устройств [3].

Предлагаемый способ особенно актуален для лазеров со сложной кинетикой возбуждения, например, к лазерам на стекле, активированном эрбием, в которых процесс накачки занимает длительное время (порядка 1 мс), в течение которого режим освещения активного элемента представляет значительные трудности как схемного, так и принципиального характера. Предлагаемый способ обеспечивает оптимальное решение этих вопросов.

Энергия токового импульса накачки E=CΔU2/2 определяется емкостью накопительного конденсатора C и спадом напряжения на нем ΔU в течение разряда, определяемым параметрами схемы и предельно допустимым напряжением Umax [2]. Допустимые пределы изменения тока через лампу определяются стабильностью режима горения и светоотдачей лампы, а также электрической прочностью элементов разрядного контура.

Рассмотрены четыре режима изменения тока накачки в течение импульса.

а) Форму импульса тока накачки I(t) задают в виде I(t)=Imin+kt, где t - текущее время; Imin - минимально допустимое значения тока накачки, а k - коэффициент, определяемый экспериментально с учетом заданных ограничений на величину энергии тока накачки в течение времени T и с учетом условия I(T)=Imin+kT<Imax; где Imax - предельно допустимое значение тока; T - длительность импульса накачки.

б) I(t)=Imin+kt, где k - коэффициент, устанавливаемый из тех же условий.

в) I(t)=Imin при 0≤t≤Т1, I(t)=Imax при T1≤t≤T, где 0≤T1≤T момент времени, устанавливаемый экспериментально.

г) I(t)=Imin+k(eαt-1), где k и α - коэффициенты, устанавливаемые исходя из заданных ограничений.

На фиг.2 представлены результаты моделирования процесса накачки в режиме а). График 11 соответствует накачке постоянным током, график 12 - накачке пилообразно нарастающим током.

На фиг.3 представлены результаты моделирования процесса накачки в режиме в). График 13 соответствует накачке постоянным током, график 14 - накачке ступенчато нарастающим током при T1=0,5Т.

Временная привязка уровня накачки к импульсу тока показана условно. Реально имеет место задержка возбуждения, связанная с физическими процессами в активной среде. Мощность токового импульса во всех случаях одинакова. Выигрыш в уровне

накачки активного элемента лазера по окончании накачки составляет в случае а) 7,6%, а в случае в) 11% по сравнению с известным способом.

Был разработан макетный образец генератора импульсов тока, испытанный в составе лазерного дальномера. Экспериментальные результаты исследований образца совпадают с рассчетными.

Таким образом, предлагаемое устройство обеспечивает решение поставленной задачи, а именно, повышение эффективности накачки лазера при имеющихся ограничениях на величину и энергию импульса тока, протекающего через оптический источник.

Источники информации

1. Лазерный прибор разведки ЛПР-1. Техническое описание и инструкция по эксплуатации Г 36. 48.069 ТО. - с.19-20.

2. В.В. Тогатов, П.А. Гнатюк. Высокочастотный разрядный модуль для питания ламп накачки твердотельных лазеров. «Приборы и техника эксперимента». №5, 2003 г.-с.89-95 - прототип.

3. Продукция «Скат-Р». Фотоприемные устройства ФПУ-073, ФПУ-092. httpi://www.skay-r.ru/FPU.html


СПОСОБ ОПТИЧЕСКОЙ НАКАЧКИ ЛАЗЕРА
СПОСОБ ОПТИЧЕСКОЙ НАКАЧКИ ЛАЗЕРА
СПОСОБ ОПТИЧЕСКОЙ НАКАЧКИ ЛАЗЕРА
Источник поступления информации: Роспатент

Showing 41-41 of 41 items.
20.01.2018
№218.016.19ab

Твердотельный лазер с модуляцией добротности

Изобретение относится к лазерной технике. Твердотельный лазер с модуляцией добротности содержит источник излучения накачки в виде лазерной диодной матрицы, активный элемент, первое и второе зеркала резонатора, а также электрооптический элемент и поляризатор, активный элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002636260
Дата охранного документа: 21.11.2017
Showing 71-80 of 86 items.
20.04.2023
№223.018.4cf7

Способ приема оптических сигналов

Изобретение относится к технике выделения сигналов из шума с помощью лавинных фотодиодов и может быть использовано в областях, где требуется обеспечение максимального отношения сигнал/шум. Способ приема оптических сигналов с помощью лавинного фотодиода включает пороговую обработку сигналов и...
Тип: Изобретение
Номер охранного документа: 0002750442
Дата охранного документа: 28.06.2021
20.04.2023
№223.018.4cfb

Способ приема сигналов

Использование: изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов, и может быть использовано в любой области, где требуется обеспечение максимального отношения сигнал/шум. Сущность: способ приема сигналов, включающий прием,...
Тип: Изобретение
Номер охранного документа: 0002750443
Дата охранного документа: 28.06.2021
20.04.2023
№223.018.4d24

Способ порогового приема оптических сигналов

Использование: изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов, и может быть использовано в локации, связи и любой области, где требуется обеспечение максимального отношения сигнал/шум. Сущность: способ порогового приема...
Тип: Изобретение
Номер охранного документа: 0002756384
Дата охранного документа: 29.09.2021
16.05.2023
№223.018.643c

Способ выделения оптических импульсов

Изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных системах. Способ выделения оптических импульсов с помощью лавинного фотодиода и порогового устройства,...
Тип: Изобретение
Номер охранного документа: 0002791438
Дата охранного документа: 07.03.2023
21.05.2023
№223.018.68cd

Способ шумовой автоматической регулировки порога

Изобретение относится к выделению импульсных сигналов из флуктуационного шума, в частности к технике приема импульсных оптических сигналов, и может быть использовано в локации, связи и других областях. Техническим результатом изобретения является оперативное определение среднеквадратического...
Тип: Изобретение
Номер охранного документа: 0002794928
Дата охранного документа: 25.04.2023
16.06.2023
№223.018.7ac9

Импульсное пороговое устройство с шумовой стабилизацией порога

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума, и может быть использовано в любой области, где требуется обеспечение максимального отношения сигнал/шум. Технический результат изобретения состоит в сокращении времени выхода на режим. Для этого...
Тип: Изобретение
Номер охранного документа: 0002732004
Дата охранного документа: 09.09.2020
16.06.2023
№223.018.7ace

Способ приема импульсных сигналов

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума, и может быть использовано в любой области, где требуется обеспечение максимального отношения сигнал/шум. Технический результат состоит в существенном сокращении времени выхода на режим. Для этого в...
Тип: Изобретение
Номер охранного документа: 0002732005
Дата охранного документа: 09.09.2020
16.06.2023
№223.018.7ad8

Пороговое устройство с автоматической шумовой стабилизацией порога

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума, и может быть использовано в любой области, где требуется обеспечение максимального отношения сигнал/шум. Технический результат состоит в существенном сокращении времени выхода на режим. Для этого...
Тип: Изобретение
Номер охранного документа: 0002732003
Дата охранного документа: 09.09.2020
17.06.2023
№223.018.7f57

Способ локационного измерения дальности

Изобретение относится к лазерной локации, а именно к импульсным лазерным дальномерам и локаторам. Способ локационного измерения дальности путем зондирования цели пробным импульсом малой энергии Е и приема отраженного целью сигнала, а в случае отсутствия отраженного сигнала - повторным...
Тип: Изобретение
Номер охранного документа: 0002766065
Дата охранного документа: 07.02.2022
17.06.2023
№223.018.8049

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Предложен приемник импульсных лазерных сигналов, содержащий герметичный корпус с защитным окном, за которым размещены фоточувствительный элемент и схема обработки сигнала, включающая усилитель и...
Тип: Изобретение
Номер охранного документа: 0002762977
Дата охранного документа: 24.12.2021
+ добавить свой РИД